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SECTION 1
INTRODUCTION

The objectives of the FMDS program were to design, develop, fabricate, test, and deliver
two flight units (later changed, by contract modification, to one flight unit) of a satellite Flight
Model Discharge System (FMDS). The FMDS is a stand-alone system capable of autonomous
operation (except for power) that monitors spacecraft potential, determines when spacecraft
charging is present, and operates a discharge device to eliminate potentials and maintain the
spacecraft in a neutral charge state. The FMDS is designed to be incorporated into the
"housekeeping” function of any spacecraft subject to spacecraft charging. While full ground-
command capability is retained Jor redundancy, only a "power on" command is required to
activate the system. In addition to the capability for remote command override of its
autonomous operation, the FMDS provides telemetry signals to monitor such functions as
sensor outputs, controller "commands,” plasma source operation, gas supply in the reservoir
tank, and system state-of-health diagnostics (e.g., temperatures, voltages, and currents).

The technical effort under the FMDS program covered a roughly 5.5 year time span. It
started in September of 1983 and the flight hardware was delivered in May of 1989. The
major phases of the program were:

+  Conceptual Design Review

*  Preliminary Design Review

*  Breadboard Demonstration

*  Critical Design Review

»  Flight Fabrication and Assembly
»  Flight Testing.

In the following technical discussion, we present the results of the effort on the FMDS
contractual program, which was carried out at Hughes Research Laboratories in Malibu,
California. An overview of the FMDS is presented, followed by an in-depth treatment of the
design, operation, and testing of the FMDS hardware and software.




SECTION 2
FLIGHT MODEL DISCHARGE SYSTEM TOTAL SYSTEM

The FMDS is a stand-alone system capable of autonomous operation (except for power) that
monitors space-vehicle potential, determines when charging is present, and operates a
discharge device to eliminate charge buildup and maintain the vehicle in a neutral charge
state. The FMDS is designed to be incorporated into the "housekeeping"” functions of any
vehicle subject to spacecraft charging. While full ground-command capability is retained for
redundancy, only a "powe: on" command is required to activate the system. It detects
charging, operates to neutralize the charging, and returns to the passive mode when the
charging hazard is no longer present.

The FMDS consists of three types of components:

¢)) Charging sensors:

. Electrostatic Analyzers (ESAs). These sensors detect absolute charging relative to
the ambient plasma in space.

. Surface Potential Monitors (SPMs). These sensors determine differential charging
relative to spacecraft ground.

. Transient Pulse Monitor (TPM). This sensor detects the electromagnetic pulses
generated by the onset of arcing.

(3 An active discharge device (plasma source).

3) A control unit to interpret the sensor outputs, determine when and if charging is

occurring, and control the discharge device.

A block diagram of tne system is shown in Figure 2-1.

The controller incorporates comprehensive charging-detection algorithms that contain ground-
alterable parameters to allow in-space refinement of FMDS operation. The controller
incorporates redundant and fault-tolerant software to permit the FMDS to continue operation in
the face of specific faults or failures. In addition, it has the capability for ground- or remote-
command override of its autonomous operation, and also provides telemetry signals to monitor
such functions as sensor outputs, controller status flags, plasma source operation, gas supply
pressure in the reservoir tank, temperatures, voltages, and currents.

The FMDS is ultimately intended for extended satellite operation at geosynchronous orbit;
however, it is designed to withstand the launch and operating environments of both
geosynchronous and Shuttle orbits. While the primary emphases are safety and reliability, low
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Figure 2-1. Block diagram of the FMDS.




operating and transient voltages are also considered to prevent Paschen breakdown and to
minimize EMI.

2.1 OVERALL SYSTEM

Figure 2-2 is a photograph of the FMDS flight hardware as it was delivered (TPM not
installed), with the flight components mounted on the system base plate. The base plate is an
aluminum honeycomb-structure mounting plate to provide a simple, lightweight, and structurally
sturdy interface with the host spacecraft. No attempt is made in this photograph to indicate the
exact mechanical interface of the FMDS with the host spacecraft since at this time a specific ride
has not been determined. The structurally integrated design approach also facilitates system
tzsting in both laboratory vacuum chambers and environmental test fixtures (vibration,
thermal/vacuum, :tc.).

Because of the diversity of functions required of the various FMDS components, each element
is packaged separately and attached separately to the common mounting plate. Maintaining
separation between each of the components has the added advantage of facilitating substitution of
upgraded component designs if such upgrades become available in the future.

The two SPMs and the ESAs are mounted on one end of the FMDS mounting plate to provide
both maximal and similar exposure of the sensors to incoming particle flux while avoiding (as
much as possible) any local distortions of electrostatic equipotentials that might be caused by
other devices, such as the plasma source.

The plasma source is located at the other end of the FMDS where it is farthest from the
charged-particle entrance aperatures of the ESAs; this minimizes the introduction of plasma-
source-generated particles. In this location, the source is reasonably remote from both the ESAs
and the SPMs.

The electronics packages for the plasma-generater, TPM, and controller; the SPMs; the ESAs;
and the plasma generator are all at the same height. This uniformity allows adding a cover to
FMDS to form a ground plane and to provide a mounting surface for the TPM external antenna if
the 'MDS is mounted to the exterior of a spacecraft.

Inasmuch as the FMDS is intended for satellite use, minimizing weight, volume, and power
was of utmost concern. The overall FMDS, without the TPM installed, has a mass of 19.4 kg
(42.8 1bs.) which is a 1.6 kg increase from the CDR estimate, and consumes less than 5.6 W (a
decrease of 4.1 W from the CDR estimate) when the plasma source is not activated, and less
than 21 W when it is activated. With the TPM installed, it is estimated that the FMDS would
have a mass of 21.2 kg, and consume 13.2 W when the plasma source was not activated and
27.8 W when it was. FMDS weights and power consumption are summarized in Tables 2-1 and
2-2 respectively. The overall dimensions are 16.5 x 38.1 x 61 cm (6.5 x 15 x 24 in.).
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TABLE 2-1. Summary of FMDS Weights.

T8234-1
CDR Estimate Defivered
Values
Unit Original
Mass, Weight, Mass, Weight, ngtergct
kg lbs kg Ibs bs
ESA 27 6.0 1.873 4.13 6.0
SPM (2 Units) 1.4 3.0 2.544 5.61 3.0
Controller 1.7 3.7 1.415 3.12 —
Plasma Source 1.4 3.0 1.720 3.79
Source Electronics 20 44 3.461 7.63 15.0
Feed System 42 9.2 4.067 8.97
Harness 0.7 1.5 0.595 1.31 —
Thermal Control 0.9 2.0 0.000 0.00 —
Mounting Plate 22 4.8 3.006 6.63 —
Miscellaneous
Hardware — —_ 0.240 0.52 -
FMDS Dry Mass
Without TPM 17.2 37.6 18.921 41.71 —
Xenon/Hydrogen 0.6 1.3 0.496 1.10 —
FMDS at Launch
Without TPM 17.8 38.9 19.417 42.81 32.0
TPM 1.6 35 1.80* 3.97* 3.0
TOTAL 19.4 424 21.22 46.78 35.0
*Estimated




TABLE 2-2. Summary of FMDS Power Consumption.

To234-2R2
CDR Estimate Measured Values
Worst Case Original
. rigina
Unit Contract
Source Source Source Source Spec, W
Off, W On, W Off, W On, W
ESA (S/N 002) 1.25 1.25 1.44 1.44 1.25
SPM (2 Units) 1.0 1.0 0.36 0.36 2.00
Controller 4.0 4.0 0.86 0.86 (4.0)
Plasma Source 0.0 13.7 0.00 14.67 (25.0)
Housekeeping
Inverter 3.4 4.1 2.89 2.90 —_
FMDS
Without TPM 37 24.1 5.55 20.23 32.00
TPM 4.0 4.0 7.6* 7.6* 3.00
TOTAL 13.7 28.1 13.15 27.83 35.00
FMDS Contract
Spec 10.0 35.0 10.00 35.00 35.00
() = Inferred
*Estimated




2.2 COMPONENTS

The ESAs measure the energy distribution (from 50 eV to 20 keV) of electrons and ions
incident upon the satellite. These energy distributions will shift when environmental conditions
become conducive to spacecraft charging. A shift in the electron spectrum to higher
temperatures is indicative that charging is likely to occur. There is a second shift in the energy
distributions which is directly related to the potential of the satellite frame relative to the space
potential. Because the ESAs are referenced to the satellite frame, and the particles originate
with energies relative to space potential, any change in the potential of the satellite frame
appears as shifts of the zero references in the particle—eneréy distributions. Algorithms in the
controller detect these shifts (Figure 2-3) in order to (1) provide an early warning that
threatening substorm conditions are developing (by detecting elevated electron temperature), and
(2) detect that charging of the satellite frame has exceeded a threshold level (by detecting a zero
shift in the ion spectrum). These algorithms provide a signal to turn ON the plasma source.

The SPMs detect the onset of differential charging of the satellite dielectric surfaces. When
the satellite is in sunlight and charging conditions exist, the isolated dielectric surfaces that are
shaded charge much faster than the satellite frame because of the absence of the neutralizing
effect of photo-emission from these shaded surfaces (Figure 2-4). Therefore, through
measurement of the potential on the surface of a shaded dielectric sensor, differential charging is
detected quickly and prior to the detection of satellite-frame charging by the ESA. When the
satellite is in eclipse, however, satellite-frame charging occurs faster than differential charging
(Figure 2-4). In this circumstance the ESA is the prime detector.

The TPM detects electrical discharges that occur on the surface of the satellite as a result of
differential charging. A floating-plate sensor is employed to pick up radiated electric fields
caused by these discharges. If electrical discharges are occurring, the implication is that the
satellite is charged up, that the plasma generator should be turned on, and that the other sensors
have failed to detect the charging. The TPM has ground-adjustable parameters and can be
commanded to ignore transients occurring within 1 s following receipt of a command by the
spacecraft. The TPM is designed to avoid false arc-discharging alarms.

The controller provides for autonomous control of the FMDS relative to the remainder of the
satellite. This device also ties together the other units of the FMDS. The brain of the controller
is a microprocessor that contains the algorithms necessary to interpret the data from the sensors
and command the plasma generator to turn ON when spacecraft charging is occurring and then
turn OFF when it is no longer required. The plasma generator is turned OFF after a
programmable time-out (when the emission current from the plasma generator has been less than
a threshold value for a specified period of time) and when the ambient electron environment
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returns to a quiescent condition. The controller also provides the command and telemetry
interface with the saellite.

The plasma generator emits xenon and hydrogen ions and electrons in sufficient quantity (>1
ma) to bathe the satellite in a conductive low-energy (<50 eV) plasma. This conductive plasma
drains the charge from dielectric surfaces and also forms a "plasma bridge" to the surrounding
natural space-plasma environment. The plasma generator is capable of igniting in <1 s,
operating for 1200 h, and executing 1000 ON/OFF cycles. It requires three power supplies and a
gas-feed system consisting of a xenon/hydrogen (90%/10%) storage tank, a pressure regulator,
valves, and a flow regulator.

Tables 2-3 through 2-8 list the major contractual specifications for the ESAs, SPMs, TPM,
controller, plasma source, and system, respectively. The respective parameters of the final
design are also listed in these tables.
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Table. 2-3. Electrostatic Analyzer Original Contractual Specifications and Respective

Final Design Parameters.

14881-17R6

ORIGINAL CONTRACTUAL SPECS

DELIVERED SPECS

ION AND ELECTRON SPECTRA <100eV
TO 20 keV

GEOMETRIC FACTOR =103 T0 104 cm? - SR

2 B ENERGY CHANNELS
< 2% OVERLAP AT FWHM
SWEEPS OF 2,5, AND 105

VOLTAGES SETTLED TO 95% BEFORE
COUNTING

GRID TO REPEL PLASMA SOURCE IONS
AND ELECTRONS (<50 eV}

SUN SENSOR TO PROTECT CEM. .
CMD OVERRIDE OF SUN SENSOR
REDUCE UV SCATTERING
COMMANDABLE CEM BIAS
THREE-YEAR ON ORBIT LIFE

TELEMETRY

<1.25W
<6lb

50 eV TO 20 keV

6x 104 em2 - SR

16 CHANNELS

< 2% OVERLAP-NO GAPS
SWEEPS OF 4, 8, 16, AND 32s

VOLTAGES SETTLED TO = 95% BEFORE
COUNTING

GRID BIASED ATS50 V

SUN SENSOR

CMD OVERRIDE

SANDBLASTED PLATES
COMMANDABLE BIAS (8 LEVELS])

DESIGNED FOR THREE~YEAR OPERA-
TIONAL LIFE

ACCUMULATED COUNTS, ENERGY
CHANNEL, STATUS, AND DIAGNOSTICS

<1.50W
<421b
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Table 2-4.  Surface Potential Monitor Original Contractual Specifications and Respective

Final Design Parameters.
14881-18R4
ORIGINAL CONTRACTUAL SPECS : DELIVERED SPECS

DIELECTRIC SURFACE POTENTIAL VIBRATING ELECTRODE

MEASURED WITH ELECTRIC FIELD SENSOR ELECTROSTATIC VOLTMETER

POTENTIAL AND POLARITY FROM 100 V DUAL RANGE: +2kV

TO 20 kV + 20 kV

TWO DIFFERENT DIELECTRICS IN FLIGHT TWO INSTRUMENTS WITH DIFFERENT
DIELECTRICS

CHOICE OF SIX DIFFERENT DIELECTRICS CHANGE SENSING PLATE TO CHANGE
DIELECTRICS

TELEMETRY SURFACE POTENTIAL, RANGE,
DIAGNOSTICS

<2w <0.4 W (2UNITS)

<3b <5.7 Ib (2UNITS)

13




Table 2-5. Transient Pulse Monitor Original Contractual Specifications and Respective

Final Design Parameters.

14581-19R6

ORIGINAL CONTRACTUAL SPECS

DELIVERED SPECS

DIPOLE SENSOR

MEASURE RADIATED
ELECTROMAGNETIC PULSES

MULTIPLE THRESHOLD LEVELS

PARAMETERS MEASURED/1s
- MAXPOSITIVE PEAK AMPLITUDE
- MAX NEGATIVE PEAK AMPLITUDE
— POSITIVE INTEGRAL
— NEGATIVE INTEGRAL
— PULSEWIDTH
- NUMBER OF PULSES

10 V/M TO 10 kV/m FIELD STRENGTH
" 10ns TO 10 us PULSE WIDTHS

1 COUNT/ms MAX

MONOPOLE {123 cm? PLATE)

MEASURE RADIATED .
ELECTROMAGNET!C PULSES

8-BIT DAC

PARAMETERS MEASURED/ 4s

POSITIVE PEAK AMPLITUDE/PULSE
NEGATIVE PEAK AMPLITUDE/PULSE
INTEGRALS NOT MEASURED

1

PULSE WIDTH/PULSE
PULSES/4s

i

1

10V/m TO 10 kV/m
20 ns TO 10us

1 COUNT/5ms

TELEMETRY PARAMETERS MEASURED AND DIAGNOSTICS
<3wW <7.6w*

<3b <4.01b

*ESTIMATED
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TABLE 2-6. Controller Original Contractual Specifications and
Respective Final Design Parameters.

Original Contract Specs Delivered Specs

Provide autonomous operation of FMDS Autonomous operation

Determine if threshold levels of charging have been Charging above threshold will be detected

exceeded

Turn on plasma source and operate for 5, 10, 30, Turn on and control plasma source. Tumn off

or 60 min based on time (30, 60, 90, 120 min) and/or
environmental conditions

Detect with 98% reliability Designed to meet based on SC9 data

— 95% of cases for charging 2500 V
— 100% of cases for charging 21000 V

Commandable threshold charging levels of 200, 500, Same

1000, and 2000 V

Spacecraft arcing to activate plasma source Arcing will ectivate plasma source

EMI pulses within 1 s of spacecraft command to be Ability to blank TPM for 1 s (requires signal

ignored from spacecraft)

External command adjustment of TPM algorithm All aigorithms will be adjustable via external
command

External commanding of plasma source Manual operation of complete FMDS

Telemetry Status and diagnostics

Design to include considerations of radiation Hardened to 5x10° rads (flight)

hardening

Redundancy Critical parameters stored in three locations
(majority voting)

Excess capacity Excess memory and [/O

15




Table 2-7. Plasma Source Original Contractual Specifications and Respective Final

Design Parameters.

14881-20RS5

ORIGINAL CONTRACTUAL SPECS

DELIVERED SPECS

< 50eV NEUTRAL PLASMA

IONS FROM A NOBLE GAS

10 A, 100 uA, AND * mA ION CURRENT
LEVELS (SELECTABLE)

< 105 IGNITION

1200 HOURS OPERATION

1000 ON-OFF CYCLES
<25wW

<15ib
BLOW-OFF COVER {IF COVER USED)

TELEMETRY OF EMISSION CURRENT
AND DIAGNOSTICS

<40eV
90% XENON-10% HYDROGEN

<600uA TO > 1mA, 4 SELECTABLE
SETPOINTS FOR DISCHARGE AND
KEEPER

<1s
> 1200 hr
> 1000 CYCLES

< 10 W OPERATING
< 20 W CONDITIONING

<205 b DRY
REMOVE-BEFORE-LAUNCH COVER

TELEMETRY OF EMISSION CURRENT
AND DIAGNOSTICS

16




Taole 2-8. FMDS System Original Contractual Specifications and Respective Final

Design Parameters.

T9234.8

Original Contractual Specs

Delivered Spects

Low-energy plasma within 30s of exceeding a charging
threshold

Analog telemetry outputs between 0.00 and 5.10 V
Digital commands and telemetry TTL compatible
All ground retusns self contain and isolated by 2 megohm

Permanent magnetic fields 2100 nT at 1 méter in any
direction

Mating connectors to be furnished
No cadmium-plated connectors or other hardware

<35 lbs.

<10 W with plasma source off

Power profile to be provided
High-rel parts for >3 yr life in deep space orbit
Thermal models to be provided

-

Ground support equipment to be provided - command/
telemetry and power source

EMIL: designed to meet MIL-STD-461B and MIL-
STD 1541

Shall meet shuttle safety requirements - NASA handbook
1700.7A, JSE 11123 and JSC 13830

Acceptance tests to be performed in accordance with MIL-
STD-1540A

Same except for ESA 16-s and 32-s weep which
requires 38s

No analog signals to satellite

TTL compatible and optically isolated
Designed to meet - single ground point philosophy
Designed to meet

Mating connectors furnished
No cadmium anywhere

<43 1bs. without TPM
<47 Ibs. with TPM

<5.6 W without TPM
<14 W with TPM

Power profile measured and provided

Rad-hard Class-B parts

Analytical thermal models provided

Ground support equipment will be provided -
command/telemetry, power source, and vacuum
pump

Designed to meet

Designed to meet

Designed to meet

17




Table 2-8. Continued.
T9234-8
Contractual Specs Design
Random Vibration: Designed to meet
Frequency (Hz) PSD (g%/Hz)
20 0.004
20-37.5 +12 dB/octave
37.5-90 0.050
90-200 +4 dB/octave
200-700 0.150
700-2000 4 dbjoctave
Composite 13.7 g rms
Duration of 2 min along each of 3 orthogonal axis
Sine survey: Designed to meet
05t010¢g
1510 100 Hz
One sweep up and down in each axis at 2 octaves/min
Transient shock: Designed to meet
25 g, 11 ms, half-sine pulse along each axis
Thermal vacuum: Designed to meet
210" Torr
-24°C to +61°C
12 h at the low and high temperature levels
Thermal cycling: Designed to meet
Ambient pressure
-24°Cto +61°C
28 cycles with 2 h dwell at low and high temperature,
transitions at 23°C/min
Burn-in:
Ambient pressure Designed to meet
-24°C 10 +61°C
218 total cycles including those above
Depressurization/repressurization: Designed to meet
Shuttle profile

JSC 07700 Vol. XIV
Attachment 1, Rev. G
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SECTION 3
ELECTROSTATIC ANALYZERS

The FMDS incorporates ESAs to measure the distribution of ion and electron energies
which are incident on the spacecraft. The ESAs are important to the FMDS charging-
detection function because of the instruments specified for the FMDS, they alone can detect
the onset of eclipse charging. (The SPMs respond too slowly when the spacecraft is in
darkness.) The data can be analyzed to determine the actual vehicle potential (i.e., frame
potential relative to space potential) rather than the dielectric-surface potentials monitored by
the SPMs. In addition to these important charging-detection attributes, the ESAs provide
valuable scientific information.

The ESAs employed on the FMDS are configured with short-cylindrical-section
sensors. Instruments of this type have been used in physics experiments since the turn of the
century, and similar devices have been flown on many spacecraft. However, the short-
cylindrical-section sensors do present a problem with the ability of the proton (ion) detectors
to discriminate against high-energy electrons as discussed in Section 10.2.6. The FMDS
instrument incorporates 16 channels and fast sweep-times (4, 8, 16, or 32 s) in order to
provide the rapid reaction time that is required in the FMDS missior.

3.1 ESA DESIGN

The ESA design is for 15 energy channels covering the range of 50 eV to 20 keV plus
a background channel, making a total of 16 channels. The background channel is included to
allow for subtraction of the scattered electron background in the lower energy channels. Table
3-1 lists the energy detection characteristics of the ESA. The following sections describe the
design in more detail.

3.1.1 Detection Assembly Design

The basic design of the ESA detection assembly is shown in Figure 3-1. The assembly
is similar to several that have been constructed by Panametrics, so it is a proven design with
well-known detection characteristics. The unit has been designed for satellite use, and so can
withstand the shock, vibration, and other environmental aspects of launch and orbital
operations. The major characteristics of the detection assembly are described below.

. The analyzer plates have a narrow seperation, and the surfaces are treated to
reduce particle and light scattering. This is important to reduce electron
background from the scattering of the intense high-energy (tens of keV) electron
fluxes present during spacecraft charging events. The plate design also strongly
reduces the intensity of scattered solar UV reaching the CEM detector.

19




Table 3-1. Energy Detection Characteristics of the ESAs.

14881-25R2

CHANNEL ENERGIES INeV =
NUMBER E LOW) E (HIGH) E (AVERAGE)
0 BACKGROUND CHANNEL
1 50 75 62
2 75 111 93
3 111 166 138
4 166 247 206
5 247 368 - 308
6 368 549 459
7 549 819 684
8 819 1221 1020
9 1221 1821 1521
10 1821 2714 2267
11 2714 4047 3381
12 4047 6034 5041
13 6034 8997 7516
14 8997 13414 11205
15 13414 20000 16707

GEOMETRIC FACTOR
INTRINSIC ENERGY RESOLUTION

6x 10°% em? - sr (CAN BE MADE SMALLER)
AE (FWHM)/E (AVERAGE) = 39%

20
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- Figure 3-1. Basic design of the electrostatic analyzer detection assembly.
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The CEM and associated electronics are mounted on a ceramic circuit board.
This reduces the level of organic vapors near the CEM which helps to prolong
its life. Since the CEM is the component most likely to degrade, considerable
care must be used to minimize organic contamination, which tends to hasten
CEM gain degradation.

The CEM ceramic board is easily replaced so that a CEM that has been
degraded during prelaunch testing can be easily replaced.

The ESA has a geometric factor of approximately 6x104 cm?2-sr, which is
appropriate for geosynchronous orbit applications. The geometry of the
detection head is shown in Figure 3-2 where:

a; =0.318 cm

by =2.032cm

di=1lcm

a2 =0.318 cm

b2 =1.016 cm

d2=1cm

Ry =11.008 cm

Ry =11.404 cm

s =0.132cm

alpha =28°

V/2 =200 V maximum
Geometric Factor = 6 x 104 cm2-sr
Energy Resolution = 39%.

A normalized curve for the detection characteristics of this design is shown in
Figure 3-3. Adjacent energy bins are spaced such that their curves overlap from 0 to 2% at

FWHM.

The physical design of the complete ESA unit is shown in Figure 3-4. The ESA
detection assembly, photodiode, and electronics are all contained in a 4.5 x 6 x 5.5-in.
housing. The housing also contains connectors for power and information flow to/from the
controller and for access to test points.

3.1.2 Electronics Design

The basic electronics design for the ESA is shown in Figure 3-5, which indicates how
the basic required operational characteristics are met. Significant features of the design for
ions (electrons) ii:clude:

A +50 V (-50 V) grid in front of the CEM to eliminate ions (electrons) below
50 eV, thus protecting the CEM from the plasma source ions (electrons).

A CEM aperature biasing of -500 V (+500 V) to increase the detection

efficiency for low energy ions (electrons). This voltage is held fixed to avoid
efficiency changes with CEM gain-voltage changes.

22
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PERPENDICULAR TO THE PLANE
OF THE FIGURE.

Figure 3-2. Basic geometry of the cylindrical plate electrostatic analyzer.
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Figure 3-3. Normalized detection characteristic of a single energy bin.
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. Adjustable CEM gain by command using a controlled high voltage power
supply (HVPS).

. Reducible CEM gain when the unit is turned toward the sun, by means of the
photodiode. This operation can be enabled or disabled by command.

. CEM counis which are accumulated in a 16-bit counter (65,535 maximum,
after which the counter rolls over). This allows the CEM to operate at 262 kHz
for the 4-s accumulation time, and at 32 kHz for the 32-s accumulation time,
based on 16 channels.

. The ESA-plate voltage-sweep-control block diagram is shown in Figure 3-6.
The control voltage drives a bipolar supply to provide the +V/2 and -V/2 in
Figure 3-2. The ESA design is such that for 20-keV ions or electrons, +V/2 =
1200 V. The sequencing in Figure 3-6 is such that R; through R;¢ set up the
central energy of each energy channel. The value of R is set so that Channel 0
measures background, with no direct ion (electron) response. The circuitry can
be readily set to provide the energy channels of Table 3-1.

The remainder of the electronics design is straightforward digital control circuitry,
timing circuitry, power supplies, and interface buffers. The schematics for all of the
electronics are presented in Figures 3-7 through 3-12,

3.1.3 CEM Lifetime

Channel Electron Multipliers (CEMs) are typically quoted as having a lifetime in
excess of 1011 total counts before their gain starts to decrease. However, their lifetime is a
strong function of the contaminants they are exposed to, particularly complex hydrocarbons
like vacuum pump oil. A typical lifetime curve for a CEM is shown in Figure 3-13. The
initial high gain is attributed to the sputtering of contaminants from the CEM surface.

Electron avalanches produce ions from the contaminants; these ions produce additional
electron avalanches which account for the high gain. As the surface is cleaned by the
sputtering process, the gain falls to a minimum value and then increases slighty. This increase
in gain is attributed to a further cleaning of the CEM surface. The gain then levels off and
remains at this level to greater than 10!! counts, provided the CEM environment is and has
been free from heavy hydrocarbons. Tests have been performed that show the gain is flat to at
least 2x10!1 counts!, one test showed 7x10!2 counts2.

Assuming a conservative lifetime estimate of 101! counts for the CEM, and a counting
rate for ions of about 60 counts/s at GEO with our geometric factor of 6x104 cm?2-sr; the
lifetime of a CEM should be at least 53 years. The estimated electron counting rate is
expected to be about 13,300 counts/s, yielding a lifetime of only 0.25 years. Therefore, the
entrance aperature of the electron ESA was reduced a factor of approximately 40 using a plate
with three small holes to provide a 10 year lifetime.
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Figure 3-6. Block diagram of the ESA-plate voltage-sweep control.
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Figure 3-13. Typical gain versus total count curve for a CEM.
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A counting rate of 60 counts/s or an average of 15 counts/channel for the minimum
sweep time of 4 s is marginal from a statistical standpoint. The ESA 16-s and 32-s sweeps
will give an average of 60 and 120 counts/channel/sweep respectively, which are statistically
significant.

3.1.4 Commands and Telemetry

The ESA accepts a parallel digital command to set the ion detector CEM bias, the
electron detector CEM bias, the sweep time, and to enable or disable the sun sensor. The
digital bit patterns for these commands are listed in Table 3-2 and the digital interface is
defined in Figure 3-14, The signals are LSTTL and 5-V CMOS compatible.

The ESA provides serial digital telemetry data for the energy channel, the sweep time,
the jon detector CEM bias, the electron detector CEM bias, the sun sensor status, the sweep
time reset flag, the sun sensor inhibit flag, the data overrun flag, the ion detector count, and
the electron detector count. The digital bit patterns associated with this data are shown in
Table 3-3 and the serial digital interface is defined in Figure 3-15. The signals are LSTTL
and 5-V CMOS compatible.

3.2 BREADBOARD TEST RESULTS

The breadboard instrument fabricated by Panametrics was part of the breadboard
demonstration and exhibited its ability to detect both ions and electrons and provide suitable
data to the ion-ESA and electron-ESA algorithms. Operation: of the ESA was not effected by
the presence of the plasma emitted by the plasma source.

The ion ESA was calibrated at Hughes using a monoenergetic proton beam and a
gimbal to vary the direction of the beam relative to the ESA entrance aperature. A typical
calibration curve is shown in Figure 3-16. The response curves for several angles are shown,
along with the envelope of these response curves, and the theoretical envelope for the
instrument. The ratio of the high and low energies at FWHM (1.504) is very close to the
theoretical value of 1.491. The center energy of 4.35 kV, however, is approximately 12%
lower than the theoretical value of 4.94 kV. This can be corrected by slightly increasing the
voitage on the detection plates. All of the energy bins exhibited similar responses except for
the low energies (50 eV to 200 eV) where the Earth's magnetic field was effecting the
trajectory of the proton beam.

The electron ESA could not be calibrated at Hughes because of the effect of the Earth's
magnetic field on the electron beam.
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Table 3-2. Digitial Bit Patterns for the ESA Commands.

14881 -26R1
ESA COMMANDS
MSB LSB
JON OR ELECTRON CEM BIAS BIT 2 BIT 1 BIT 0
LOWEST BIAS 0 0 0
0 0 1
0 1 0
MONOTONICALLY 0 1 1
INCREASING
1 0 0
1 0 1
1 1 0
v
HIGHEST BIAS 1 1 1
SWEEP TIME Ms8 LSB
{s) BIT 1 BITO
2 0 0
4 0 1
8 1 0
16 1 1
PHOTO DIODE 18IT
ENABLED 0
DISABLED 1

NOTE: ALL SIGNALS ARE POSITIVE TRUE (“1").

37




"30BJI3Ul PUBIULLOD TSP VST “p1-¢ 2m3Ly

1 29 1 133us] T — 3w ) NOHVIITddY ”
e NOO3SN ] ASSY4X3N .
evbésor | LS8 |3 _ ! (@314103dS ISIMYAHLO SSIINN) :SILON
vwoss  {ans| .
2N WRLLY FYANIS Ivid3gvn ‘ANT IIV10ULrI®D INL NO AFNILYT FAV SetwyWwod )
WD0ID ANY ANV wWoD> vsT SIS onuY o e ¢ ) FnLL Dnitisel FIV SIVANS T T
- TS T ~ nw:uu_vn_»w.mzﬁ‘ﬁ; DI ILvdWwoD SowD AT+ 23V STWVIIS 1YY T
SIHOIYHOAV H: : ;
ANEAROD LIVUIY SaranH mmmtﬂ..:..m Saw=l yovuinoo] OFION SV 1430x3
1517 S$14vd .
AOIIINDS30 ON ONIAZIINTOI
w.ro!....._ noz _ YO IUNLVIININON _ B0 tuva ~ ON IS4 _osmw..

‘W07
AVeIRS T WL IVEINT NNRIDO LN

M LAR w301D qNodPS T IH.L s\k.IS/
SNONA WIWASY UV S LIS VLL A!t.e..\eo//)

A
! | \ oo
b Y { 1 o
7 M 257 - o Aig \ x
t] . 1 t
3 ! !
H Yy #sw -7 8 | i \
» N ——
hd - | )
iy n ﬂ ! ! J
CAeNIIE wre1D X m 57 - o urx |\ I \
: 2 3 1 1
WIS T PNL Bl IE (KVw $7TE) s/ N H H '
AVIVdAL §SPSI1Y YWy WS Neer1D> FH AT/ 3 ” T e \ w \
/ y X / 1 )
» [ 1 ]
1 | / (3 3 Fsw - v a2 ﬂ K
.—.|.|.||..V e “
_— \ ! \ﬁulhtn,u .\vn.(tw.v i n.ﬁ . _ 1 1
| 4 1 woer> ¥¥ 8T/ ) S—— | b r
“ (8 “ —m £5r - o e / Y \
1 370 $+75°¢L) I [} 1 /
E _.In— ftnw az WS b ! !
woer> 325 T 3 T 1 x
¥ ) ]
o | I
I T 5w gsw - T g 1
e T 1 ]
,m 2 / v, . :
W aerevVIIT /e X IZYNT
mm 7 Ferd arowd ] i /
™ w \ \
i
> QFSn oV YV Sitl
sz al SoviY Vi 2
E&— EYCT | “Roiangge3d s Amwoniny T 397 ) 13 ~PAPS IrvimivwIY s CwViwwe
SNOIBIAIY .




Table 3-3. ESA Digital Telemetry Bit Patterns.

. ESA DATA 14881-27R1
ENERGY CHANNEL MSB | sz | BT iy
0 — LOWEST ENERGY 0 0 0 0
1 6 0 0 1
2 ¢ 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 — HIGHEST ENERGY 1 1 1 1
.
SWEEP TIME MSE LSB
. (s) BIT1 | BITO
2 0 0
4 0 1
8 1 0
16 1 1
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_.. Table 3-3. Continued.

1488128
ESA DATA - CONTINUED
MSB - LS8
ION OR ELECTRON CEM BIAS BIT 2 BIT 1 BITO

LOWEST BIAS 0 0 0
0 0 '
0 1 0
0 1 1

MONOTONICALLY
INCREASING 1 0 0
1 0 1
1 1 0

v

HIGHEST BIAS 1 1 1

PHOTO DIODE STATUS 18IT
ENABLED 0
DISABLED 1

SWEEP TIME RESET FLAG 1BIT
{NORMAL 0
RESET OCCURRED 1

PHOTO DIODE INHIBIT FLAG 18BIT
NORMAL 0

INHIBIT OCCURRED




Table 2-3, Cosntinued.

ESA DATA — CONT'D

14881-29

DATA OVERRUN FLAG

1B8IT

NORMAL
OVERRUN OCCURRED

ION OR ELECTRON COUNT HIGH BYTE

BIT WEIGHT

256
512
1,024
2,048
4,096
8,192
16,384
32,768

NS WN-=O

[
-
w
w

)
=
w
w

ION OR ELECTRON COUNT LOWBYTE

BIT WEIGHT

W H N ~

16
32
64
128

NGO OS W= O

- LSB

- MSB

NOTE: ALL SIGNALS ARE POSITIVE TRUE (“1”).
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Figure 3-16. Calibration curve for energy bin 12 of the ion ESA.
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3.3 FLIGHT INSTRUMENT TESTING (at Panametrics)

The flight units successfully completed their acceptance and environmental
qualification tests at Panametrics and were delivered to Hughes. Figure 3-17 is a photograph
of unit S/N 001. Figure 3-18 shows the preliminary test sequence and Figure 3-19 the
environmental test sequence that was performed on each unit. The second unit (S/N 002)
experienced an anomaly early in its testing, where the bias to the CEMs did not turn ON when
it should have. Some resistor and capacitor values in the HV dc/dc Converter were changed
and the problem did not occur again. These resistor and capacitor values were not changed in
S/N 001. With the exception of this one anomaly, both units performed as expected and
within predetermined tolerance limits throughout the environmental testing.

A summary of the energy channel nominal counts versus CEM bias (Channel Electron
Multiplier bias) for the ion channel of S/N 001 using a H-3 beta source are presented in Table
3-4 and for the electron channel using a Ni-63 beta source are presented in Table 3-5.
Nominal count was calculated as the midpoint between the minimum and maximura counts for
each energy channel for all of the data taken during testing. Table 3-6 shows the nominal
counts normalized to the CEM bias level 0 for the ion channel of S/N 001. The first eight
energy channels (0 through 7) have relatively high counts (Table 3-4) and therefore good
statistics. The averages of the normalized counts for energy channels 0 through 7 at each
CEM tias level are also listed in Table 3-6. These averages are approximately linear with a
slowly increasing slope as the bias level increases. These data represent operation within the
plateau region of the CEM efficiency curve and below the noise region, which is the criteria
for proper operation of the CEM. Similar data showing operation in the plateau region exist
for the other three CEMs in the flight units.

Flight unit S/N 001 drew between 1.15 W and 1.49 W and unit S/N 002 between
1.09 W and 1.36 W over the full range of input voltage, temperature, and operating
conditions. The measured masses of S/N 001 and S/N 002 are 1.88 kg (4.14 Ibs) and 1.87 kg
(4.12 1bs) respectively.

3.4 FLIGHT INSTRUMENT TESTING (at Hughes)

The flight instruments were first tested at Hughes under ambient conditions using a
pulse generator to inject pulses of known amplitude and repetition rate into the test inputs.
The flight controller, software, and harness were used to control the ESA under test. This
configuration was used to confirm proper operation of the ESAs (except for the CEMs which
do not operate properly under ambient pressure conditions) and to integrate them with the
other FMDS hardware and software.
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Figure 3-17. Flight ESA S/N 001.
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CEM (S/N001).

Table 3-4. Summary of Bias Voltage vs Energy Channel Nominal Counts for Ion

T9234-11

iCEM | iCEM | iCEM
Bias=5 | Bias=6 | Bias=7
107 110 125
95 120 135
91 125 132
111 108 119
112 101 117
9 105 130
83 97 101
57 99 105
75 84 106
67 79 89
54 76 75
49 62 56
31 a1 37
17 23 28
6 10 12
4 6 5




Table 3-5. Summary of Bias Voltage vs Energy Channel Nominal Counts for

Electron CEM (S/N001).
T9234.13
Energy e CEM ¢ CEM e CEM ¢ CEM ¢ CEM ¢ CEM ¢ CEM ¢ CEM
Channel |Bias=0 | Bias=1 | Bias=2 | Bias=3 | Bias=4 | Bias=5 | Bias=6 | Bias=7
0 76 88 94 86 112 125 144 135
1 84 90 92 96 117 133 139 135
2 73 91 87 101 107 103 140 135
3 92 89 94 107 109 122 144 156
4 87 95 96 114 115 145 142 137
5 92 90 101 103 119 130 148 142
6 87 91 99 99 125 126 156 147
7 95 103 119 110 131 128 156 165
8 96 106 119 115 126 149 167 179
9 108 124 121 133 144 151 180 208
10 143 136 155 162 172 183 204 228
11 159 172 176 201 216 254 242 288
12 231 212 252 256 274 308 348 360
13 290 313 318 371 386 391 462 495
14 337 394 395 456 478 534 571 599
15 402 436 497 529 574 614 659 750
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Table 3-6. Nominal Counts Normalized to Ion CEM Bias = 0 (S/N001).

T9234-12

Energy i CEM i CEM i CEM i CEM i CEM i CEM i CEM i CEM
Channel |Bias=0 | Bias=1 Bias=2 | Bias=3 | Bias=4 | Bias=5 | Bias=6 | Bias=7
0 1.00 1.22 1.30 1.20 148 1.67 1.71 1.95

1 1.00 1.18 1.42 1.28 1.58 1.701 215 242

2 1.00 0.91 1.25 1.29 1.39 1.32 1.82 1.93

3 1.00 1.13 1.10 1.36 1.37 1.75 1.71 1.89

4 1.00 0.7 1.18 1.32 L.18 1.72 1.55 1.79

5 1.00 1.05 1.11 1.36 1.33 1.62 1.78 2.19

6 1.00 1.19 1.31 1.50 1.33 149 1.74 1.82

7 1.00 1.04 1.17 1.14 1.30 147 1.67 1.77

8 1.00 1.30 142 1.51 1.85 L77 2.00 2.52

9 1.00 1.07 1.19 1.28 143 1.52 1.78 201

10 1.00 1.07 1.18 115 1.57 1.50 2.11 2.07

11 1.00 1.11 141 141 146 1.61 2.02 1.82
12 1.00 1.06 1.55 1.36 2.06 1.85 245 224

13 1.00 1.40. 2.20 1.30 235 1.70 225 2,75

14 1.00 1.00 i.29 1.14 0.86 0.86 1.36 1.64

15 1.00 1.40 1.20 1.60 0.80 140 2.20 2.00
gun; 1.00 1.08 1.23 1.30 1.37 1.59 1.76 2,02
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The ESAs operated as expected and required only a couple of minor modifications to
the software to correct a timing problem. However, when the plasma source power supplies
were turned ON, large numbers of counts appeared in the output telemetry for the ion and/or
electron channel that were not related to the pulse generator connected to the test input.
These extra counts would go away if the ESA chassis was isolated (capacitively as well as
resistively) from the system mounting plate. The problem was identified as conducted EMI on
the cable and/or signal wires in the system harness causing the capacitance between the ESA
chassis and the ESA electronic circuitry to iniroduce the extra counts at some point in the
electronic circuitry. When the ESA chassis was isolated from the system mounting plate, the
chassis would float up and down with the electronic circitry and not introduce the extra
counts. The easiest way (and the only one found to be effective over a wide range of
operating conditions) to eliminate the problem was to bypass (with a capacitor) to the ESA
chassis each wire connected to the ESA. This was accomplished at the mating connector of
the harness with the ESA.

The ability of the ESA to detect ions and electrons could only be performed under
vacuum conditions and was performed as part of the system testing discussed in Section 10.
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SECTION 4
SURFACE POTENTIAL MONITORS (SPMs)

Two Surface Potential Monitors (SPMs) are included as part of the FMDS to detect the
charging of dielectric surfaces on the satellite. Because two different dielectric materials are to be
used in flight, and because it is desirable to have them physically seperated (to minimize their effect
on each other), the best approach was to use two instruments, with the only difference being the
dielectric material (see Figure 2-2).

4.1 BASIC SPM DESIGN

In designing the SPMs, one of the main factors is that the charge buildup on the dielectric
material is not altered because of the measurement. This dictates the use of some type of essentially
infinite-impedance electric-field-sensing device.

Most electrostatic voltmeters with sufficient accuracy and resolution use a field-sensing
probe that is closed-loop controlled to the same potential as the surface being measured. In this
way, the field sensor has oniy to detect a null. To use this approach in this application, a "servo-
amplifier" with an output of $20 kV would be required; this is not practical within the weight and
power limitations for this instrument. We have chosen, therefore, to use the approach that was
adopted by NASA's Lewis Research Center for their surface-voltage sensor (SVS).3 NASA's
approach retains most of the advantages of a feedback sensing system, yet does not require high
voltage. This system uses a combination of electrodes that attenuate the field produced by the
sensing surface, and allows it to be nulled with a low-voltage (<t10-V) feedback signal.

We have slightly modified the specifications for the SPMs from those called out in the
original RFQ issued by AFGL. The RFQ called for measurement over a range of 100 V to 20kV
and determination of polarity. If 8-bit digital data are used, then the resolution for a 20-kV full
scale range is 78 V, which is rather course when looking for surface potentials of 200 V.
Therefore, we are using a dual range instrument with nominal ranges of 0 to £2 kV and 0 to
120 kV. These ranges provide a resolution of 16 V and measure potentials to 20 kV.

4.2 SPM SENSOR HEAD DESIGN

Since the SPMs will be required to survive vibration and shock experienced during launch,
an ideal design would be all solid state; i.e., no moving parts as are present in a tuning fork.
Therefore, several potentially feasible design principles were investigated such as modulation of a
light beam within a fiber-optic bundle by the E-field and semiconductor-conductivity modulation
by the E-field similar to the operation of field effect transistors. However, these ideas would have
required considerable development and testing to achieve the level of flight readiness required by
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the FMDS program. We therefore decided to utilize the most mature technology available at this
time: the NASA LeRC vibrating electrode approach.

The functional operation of this approach is best understood with reference to Figure 4-1.
If the dielectric surface is covered by a surface charge (represented in Figure 4-1(a) as negative),
then the dielectric surface will assume some voltage, Vs, as indicated in Figure 4-1(b). The eleciric
field associated with voltage Vs penetrates the entrance aperture of the electrically grounded sensor
head such that the value of the field drops off precipitously within the sensor head. If we assume
(for the sake of explanation) that the feedback-aperture plate is grounded (i.e., V4 = 0), the electric
potential along the centerline of the sensor head would vary according to the curve marked
"feedback aperture grounded."

In actual operation, however, the feedback-aperture plate is not grounded, but is set at a
chosen potential, Va. If we instead imagine that the dielectric surface is grounded (i.e., Vs =0),
the electric potential along the centerline of the sensor head would vary according to the curve
marked "dielectric surface grounded." In practice the potential varies as the net potential curve
which is influenced both by the potential on the dielectric surface and by the potential on the
aperture plate. The associated electronics varies V in a manner that maintains the potential and the
electric field at the signal sensor plate location equal to zero.

A cross section of the breadboard sensing head is shown in Figure 4-2. The input
electrode with the dielectric material on its surface (a and b) is insulated from the rest of the
instrument by a ring of G-10 glass epoxy. No electrical connection is made to this electrode. The.
potential of the front surface of the dielectric is transferred to the input electrode by capacitive
coupling. Therefore, if the input electrode is to closely track the dielectric front surface, the
capacitance from the input electrode to ground must be much smaller than the capacitance between
the dielectric front surface and the input electrode. Creepage paths must also be kept long to
support the 20 kV that may appear on the input electrode without bleeding the charge from it.

Sensing of the field is done using a vibrating electrode (g) driven by a tuning fork. Above
the sensing electrode are two compensating electrodes (d and e) with holes of appropriate size for
controlled penetration of the electrostatic field created by the charge on the collector plate. As it
vibrates, the sensing electrode generates a displacement current that is proportional to the net field
and at the vibration frequency. The phase of this signal is determined by the polarity of the net
field. The field at the sensing electrode is nulled to zero by driving the first compensating electrode
(d) for the low range or both compensating electrodes (d and e) for the high range to a voltage
inversely proportional to that producing the field. By proper selection of the geometry, particularly
the hole sizes in the compensating electrndes, the electrostatic field created by the charge on the
collector plate can be tailored to permit nulling the maximum field with a maximum of 10 V applied
to the compensaiing electrode(s).
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To provide compensating-voltage multiplication factors of 200 in the low range and 2,000
in the high range, typical values of the crucial parameters (aperture/electrode diameter d and
separation s) for this design are as follows (see Figure 4-2 for notation): d(c) = 8.4 mm, d(d) =8.7
mm, d(e) = 11.9 mm, d(f) = 20 mm, d(g) = 22 mm, and s(b-d) = 27.6 mm.

4.3 BREADBOARD TEST RESULTS

The initial design of the breadboard SPM hardware was an open type of construction where
the tuning fork and compensating electrodes were open to the environment. Vacuum chamber tests
of this design showed a large and rapid zero shift whenever the electron gun, proton gun, or
plasraa source was operated. This zero shift would then gradually disappear over a period of
hours provided that none of the charged particle sources were operated. This zero drift was
attributed to the buildup of charged particles within the sensing head.

The sensing head was redesigned such that the tuning fork and attenuation plates are
completely enclosed. Any openings in the sensing head are smaller than the Debye length of the
highest density plasma environment expected. This design did not experience the zero drift
described above. However, when it was operated in the configuration shown in Figure 4-3a, the
output of the SPM reached a plateau above which it would not go as shown in Figure 4-4. This
was attributed to scattered or secondary particles impinging on the input electrode, causing
secondary emission, and preventing the electrode potential from increasing above the plateau value
(even though the Kapton dielectric front surface was above the plateau value). The configuration
in Figure 4-3b did not experience this problem since scattered or secondary particles or local
plasma cannot get to the input electrode.

On separate occusions, the SPM was exposed to a monoenergetic electron beam with two
types of material on its inp.'t electrode; gold and Kapton. As is typical, the gold did not start to
charge until the energy of the ~lectron beam was between -9 and -10 keV (Figure 4-4); it linearly
increased with increasing energy thereafter. The Kapton started to charge when the electron energy
reached -1.1 keV and then linearly increased with increasing energy. Activation of the plasma
source returned the Kapton surface to near zero potential with the electron beam ON or OFF. The
plasma source was not available at the time the gold surface was tested; however, other tests have
shown that a plasma source will discharge a gold surface.

4.4 FLIGHT SPM SENSING HEAD DESIGN

The flight SPM has been designed to simulate the configuration of Figure 4-3b since this is
the only configurztion that responded properly under all of the conditions tested. Figure 4-5
shows the flight design where the input electrode is now supported by an annular insulating ring
from the side rather than from below as in the breadboard design. ‘This allows the dielectric sampie
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Figure 4-4. Calibration data for the breadboard SPM.

58

12

14




15866--32R2

INPUT ELECTRODE

DIELECTRIC SAMPLE ANNULAR INSULATING RING

e\ 777\ B -\ 7 S ATTENUATING ELECTRODES
4 3
““““““““““““ \‘—\l
 Smm———— : +
il g
A

N
YA

ém
SENSING
ELECTRODE

TUNING FORK

Figure 4-5. Flight package design for the SPM.
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to extend past the input electrode onto the annular insulating ring, thereby shielding it from any
particles or plasma in the immediate area. The compensating electrodes and tuning fork are
mounted in a manner similar to the breadboard and the electronics are contained on two printed
circuit cards mounted in the lower portion of the housing.

The SPMs are designed in a manner that allows the front-surface material to be changed.
This change is accomplished by replacing the annular insulating ring, input electrode, and front
surface material as an assembly. The selection of front surface materials includes but is not limited
to VDA backed Kapton, Kapton with conductive black paint, Kapton with white paint, solar cells,
second-surfac . radiator mirrors, and a floating conductor (e.g., germanium).

A possible problem with the SPM is the input electrode gathering some charge not related
to the potential of the dielectric front surface. This charge would then introduce a zero offset into
the SPM. The breadboard design called for a shorting relay and software routine that would
connect the input electrode to ground when the SPM was in full sunlight. Under full sunlight
conditions the dielectric front surface should be within 100 V of ground, and therefore, the SPM
would be zeroed to within 100 V. This scheme required that the spacecraft periodically rotate the
SPMs into full sunlight. This requirement and the need for a small lightweight 20-kV relay turned
out to be significant engineering problems.

The flight design deletes the relay and uses a 2-h time constant (RC network) to discharge
the input electrode. A 2-h time constant requires approximately 1013 ohms from the input electrode
to ground; this could conceivably be provided by the leakage of the annular insulating ring. A
normal operating scenario has differential charging, which will immediately charge the front
surface of the dielectric, and the input electrode will go to the same potential. The 2-h time
constant will start to bleed the charge from the input electrode; however, differential charging
normally occurs in minutes, and if it is of any significant level, the plasma source will be turned
ON. The plasma source will immediately remove the charge from the front surface of the dielectric
and return it to ground. The 2-h time constant will then reset the input electrode to ground. The
problem with this approach is that very slow (compared to 2-h) differential charging will not be
detected by the SPMs,

We tried using Vespel for the annular insulating ring and tested it in a vacaum chamber
under simulated operating conditions. Vespel demonstrated an acceptable initial time constant;
however, the input electrode decayed toward a voltage level that was in the range of 25 to 90% of
the voltage originally applied to the input electrode -- the level depending on the length of time the
voltage was applied before allowing the input electrode to start decaying. The input electrode
appeared to decay with a much longer time constant (> factor 10) after the initial time constant.
Fused silica and G-10 glass epoxy exhibited characteristics similar to Vespel.



These decay characteristics are not fully understood; however, we believe that the
characteristics observed are due to charge migration on the surface and in the bulk of the insulating
ring. Furthermore, the resistance provided by the insulating ring is too high, by at least an order of
magnitude, to provide a 2-h RC time constant. Therefore, we added a discrete resistor between the
input electrode and ground (Figure 4-6) to swamp out the undesirable characteristics of the
insulating ring material and to provide the proper RC time constant.

Figure 4-7 shows the RC time constant of the input electrode under conditions simulating
the SPM being in the sun. The simulation consists of the SPM being in a vacuum chamber with
ultraviolet light shining on the dielectric sample (VDA-backed 2-mil Kapton) with a 2.7x10!3 ohm
resistor from the input electrode to ground. While this resistance value is low enough to eliminate
the zero-offset problems, figure 4-7 shows a time constant of approximately 12 h, which is a factor
of 6 too long. A proper value resistor was not available at the time of the test to provide the
réquired 2-h time constant.

4.5 SPM ELECTRONICS DESIGN

A block diagram of the SPM is shown in Figure 4-8. The circuit is basically a servo-
amplifier providing an output of 0 to £10 V which is used to drive the sensed signal to a null. The
signal from the sensing electrode is buffered by a high-input-impedance amplifier, amplified in two
stages (preamplifier and voltage amplifier), demodulated by a phase sensitive demodulator, and fed
back to the compensating electrode(s) through the integrating feedback amplifier and the autorange
circuit. The output of the instrument is derived directly from the +10-V feedback signal through
the output buffer where it is attenuated by a factor of 4 and offset by 2.5 V to provide a 0- to 5-V
telemetry signal corresponing to -2kV to 2 kV or -20kV to 20 kV. The range output from the
autorange circuit indicates on which range the instrument is set.

A means of driving the tuning fork is also required. To get the maximum amplitude of
oscillation with minimum power, the fork is driven at its self-resonami frequency. This is
accomplished by deriving a feedback signal from the motion of the fork and using it to generate the
drive. A pair of piezoelectric crystals are used as both the drive and feedback eiements, and are
mounted on the bottom tine of the fork. Piezoelectric drive, as opposed to magnetic drive, has the
advantages of ease of shielding and the absence of external magnetic fields that might influence
other spacecraft instruments. The limiting amplifier and the power amplifier comprise the
remainder of the tuning fork drive oscillator.

The schematic diagram of the SPM electronics is shown in Figure 4-S. Q4 is the input
buffer; AR2 is the pre-amplifier; AR4 is the voltage amplifier; U2 is the phase-sensitive
demodulator; ARG is the feedback amplifier; AR7 is the output buffer; U1, AR10, and AR11 form
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Figure 4-6. SPM input electrode assembly showing the discrete resistor (5 resistors in
series) between the input electrode and ground (flying lead).

62



18286-5

TIME, HOURS

NORMALIZED INPUT ELECTRODE POTENTIAL

ey
g
»
=

. SPM input electrode time response under simulated sunlight conditions.
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the autorange circuit; ARS8 is the limiting amplifier; AR9 is the power amphﬁer and QS is a photo
transistor to detect when the SPM is in sunlight.

4.6 SPM FLIGHT TESTING

The flight SPMs were tested in a vacuum bell jar to determine the values of the SBT
resistors and to obtain a calibration curve. This testing revealed a drift problem with the zero setting
of the SPMs which consisted of two parts. One part of the drift was due to temperature and was
associated with how the wire from the sensing electrode was connected to the preamp. The wire
was originally routed along the tuning fork and epoxied to it. The wire now is suspended in free
space and the associated component of temperature drift is no longer present.

The second part of the drift was a slow (days) steady drift in one direction. This drift was
traced to operation of the ionization gauge (for measuring vacuum chamber pressure). When the
ionization gauge was turned off, the SPM started drifting back toward its nominal zero point. The
SPM was not fully closed up in its flight configuration during these tests; this allowed electrons
and/or ions from the ionization gauge to enter the detection head and presumably collect on some
surface causing a change in the electrostatic field. Completely assembling the SPM eliminated this
problem. It is remarkable that partial assembly of the SPM, which provided a torturous path for
any charged particle entering the detection head, was not good enough to prevent this drift
problem. With these fixes, a zero offset was still observed immediately after pumpdown;
however, this offset decayed with a 26-hr time constant and did not yveappear.

The final calibration data taken in air for SPM S/IN 001 and S/N 002 are shown in Figures
4-10 and 4-11 respectively. The zerc points (for the low range) for the SPMs under vacuum
conditions are also shown on the figures. The low range curves need to be shifted up or down to
pass through these zero points to obtain the final calibration curves under vacuum conditions. The
zero points for the SPMs under vacuum conditions were reproducible, but the zero points in air
varied from day to day. The high range curves very nearly pass through the ideal zero point of
2.5-V output for zero input voltage. Final data on the high range were only taken for positive input
voltages; however, earlier testing showed the high range to be symmetrical. The SPMs changed
from the low range to the high range at approximately 4.4-V (0.6-V) output and back to the low
range at approximately 2.64-V (2.36-V) output for positive (negative) input voltages. A fully
assembled (without a front surface dielectric) flight SPM is shown in Figure 4-12.
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Figure 4-10. Calibration curves for SPM S/NOO1.
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Figure 4-11. Calibration curves for SPM S/N 002.
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I'igure 4-12. A fully assembled (without a front surface dielectric) flight SPM.
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SECTION §
TRANSIENT PULSE MONITOR (TPM)

The Transient Pulse Monitor (TPM) is included as part of the FMDS to detect the onset
of arcing on spacecraft surfaces. The main requirement for the selection of the TPM sensor
design is maximized ability to discriminate between signals genzrated by arcing events and
signals due to "legitimate" spacecraft circuit transients. A secondary consideration is the need to
register arcs occuring anywhere on the spacecraft surface with a minimum number of sensing
elements.

A review of the literature revealed that the main types of effects caused by arcing on a
spacecraft are those in which:

(1)  The arc causes "blow-off" of a cloud of electrons which rapidly disperses. This

geometrical change causes a pulse of electrostatic field which can be detected by

capacitive coupling to an electrometer plate. This electrostatic field can be
detected, weakly perhaps, beyond the line of sight.

(2)  The arc creates a plasma that radiates at high frequency. This in turn causes a
pulse of wideband rf energy to appear, with its source in the plasma cloud and
randomly polarized. This energy can be detected by antennas (horns, dipoles,
monopoles, etc.); for the most part, the radiation can be sensed in line-of-sight
only.

(3)  During the pre-arc stage, an increasing electrostatic potential appears (probably at
the surface of dielectric materials). The arc causes a substantial collapse of this
potential, which can be detected by capacitive coupling to an electrometer plate.
The width of the detected pulse is determined by the low frequency response of
the detection equipment, rather than any characteristic of the arc signature itself.
The collapse of the potential can be detected beyond the line of sight.

(4)  The arc causes replacement currents, which can be detected by curreni seasors, to
flo- in the conducting skin of the satellite.

Effect (4) has been employed on several satellites (e.g. SCATHA and the Canadian
Technology Satellite) as a means of detecting arcs. The major problem encountered with this
technique is its inability to differentiate between arcs and legitimate spacecraft transients,
particularly in real time. Therefore, it was not seriously considered for this application.

The remaining effects can be classified by the type of detector required. Effects (1) and
(3) utilize an electrometer plate (E-field antenna) which is broadband, whilc effect (2) requires an
rf antenna, which is narrow band. The relative merits of these two detection methods are as
follows:

. If only a s/ igle detector with a single anteana outside the Faraday cage of the

spacecraft is used, the ability to discriminate correctly between arcs and transients
appears to be equally limited for both detection methods.
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. A single broadband antenna is more likely than a single f antenna to pick up a
detectable signal from an arcing event occurring at a location far below the
horizon of the antenna (i.e., far frcm having a line-of-sight connection with it).

. Regardless of the detection method, the addition of a second antenna inside the
spacecraft Faraday cage, in conjunction with a simple pulse-analysis circuit, offers
a much increased probability of correct discrimination between arcs and transients
by permitting a comparison of signals received inside and outside of the Faraday
cage.

. It is more likely that the signals received by two broadband antennas, rather than
by two rf antennas, will have amplitude ratios that will characterize arcs and
transients properly, irrespective of the location of the event relative to the
antennas.

. Additional practical points in favor of the broadband approach are the ease of
protection from destructive overloads due to arcs adjacent to the antenna, and the
lower power consumption.

The TPM design for FMDS is based on the broadband detection approach utilizing a
123-cm? E-field antenna outside the spacecraft Faraday cage connected to a 250-Hz to 75-MHz
broadband amplifier 2nd pulse analysis circuitry, and a second 123-cm? E-field anteni,a with
greatly simplified pulse a 1alysis capabilities inside the Faraday cage. The design is discussed in
more detail in the following sections, along with test results.

5.1 TPM DESIGN

The TPM consists of two remote signal sensors and microprocessor-based pulse analysis
circuitry as shown in Figure 5-1. The remote signal sensors each consist of a 123-cm? plate
driving a buffer amplifier (AR1 of Figure 5-2). These remote sensors are cennected to the TPM
electronics unit via a coaxial signal cable and wires for +5-V power. The sensors act as
capacitive potential dividers from the electrostatic field of the arc to the spacecraft frame. The
scaling input capacitors of 45 pF (parasitic capacitance of the wiring and AR1) or 1400 pF (C4
and C15) to ground are selected by a relay (K1) to provide two dynamic ranges of 10 to 300 V/m
and 300 to 10,000 V/m. The input signal to the buffer has a dynamic range of +0.025 t0 £0.75 V.
The mechanical design of the sensor is shown in Figure 5-3.

The TPM electronics unit contains the circuitry to detect positive and negative pulses
above a commandable threshold setpo.nt, the pulse width of signals above threshold, and the
positive and negative peak amplitudes. D/A converters set the threshold levels, a multiplexed
A/D converter is used to convert analog signals to digital. and a dedicated microprocessor
controls the TPM and exercises the transient pulse algorithms for arc discrimination.

The threshold detectors are fast comparators (AR10 or AR12 of Figure 5-4) that compare
the positive and negative pulses with the commanded threshold setpoints and produce an "above-

71




EXTERNAL
ANTENNA

123 cm?
PLATE

I

RANGE SWITCH
OPEN - 10 TO 300 V/m
CLOSED - 300 TO 10,000 Vlm-I

]

!
|
I
INTERNAL
ANTENNA

123 cm2

PLATE l\
I BUFFER

z
VN

RANGE SWITCH
OPEN - 10 TO 300 V/m

CLOSED - 300 TO 10,000 VlmJ

|
1
]
|
!
|
i
1
i
i
|
1
!
|
{
|
1
!
1
|

15816-1
POSITIVE
PULSE
\ Py COUNTS
y FLIP/FLOP
NEGATIVE
PULSE
= COUNTS »
comp M FLIP/FLOP
_ RESET
THRESHOLD <
SET-POINTS «
8-BIT | 8-BITS §
DAC Lu.l’
Y —
8-BIT 8-BITS &
DAC o
©
b—j s
POSITIVE
\—4 counterPUCTE
100 MHz ‘
cLoCK L
. ¥ NEGATIVE
WIDTH
COUNTER >
+ RESET
+| PEAK ¢
DETECTOR I
)
| Peax
DETECTOR a
w
x
w
/ 29
=
- ur
2
+| PEAK
DETECTOR
™\
) PEAKE

DETECTOR

Figure 5-1. Block diagram of the TPM.

72

TO CONTROLLER



"1913nq Indu; AL 3Ys JO oneWwOYdS “Z-G AINSry

7707 1ams| | — 3w3s NOIYOIIddY
21528 | 0 NO 038N ASSY IXaN e o
¢ €966 | | 458 |9 P B (0314193dS 3SIMYIHLO SST'INT) 'SILON
.
mmuu:&&.ﬂ:&z. — 2852807 NogIvD 5 ‘m¥K v saeesrcad Y
MNHD .
S F COF0I0OF wy=dimil- :
T8/ U E Wlolumg| s3voNy xx xxx: Yww-dimii-wyg ; Secl T
S — apytAh
ANYOIOD LIVUDON SINDNH wm:u:: 1oviinop] O3ION SV 1439x3
1517 §14vd
NOILJIUJ530
w.._.u_ anoz2 _ HO JBNIVIININON — ON RO tava _ onnasi |03
r—-
PRI T3
) $€ ) P Andw LS &3
) i YE°& D!n.n €7 7
“ 1 nad g k72 kﬂ d
N N ¢ N W < TFETAT o
" VA. = - SIvva WIIH avx\\w\( T~ z» PR
Z wrrInt o
X " (PALISNIE _LSow) .*»_«\l. &/x
) o 2 o AAAA SEISWON
1 5€ H - I3V o7 T “¥el N i o0arvs fumeweid vy
" ¢ ' O 3 Wr
LT T AT A S8
] hAI."II 7
[] «! © )
1 I¢ ' €2 VAAS \‘Wf 4o
v r1 AS
]
Vot o
1 F9 P TALEL S Aviad
1
e T )
) ! oret
| ! A2
! y v
1
QR \_ 1o
, el | i
u i K»W_w\ + ot
! ! 4
AP YLD &«umt b ) k24
remver NPV ! w__ o
t ! & 7 AW ero £ 3
| r/cd
= v, 4%
el £ 2
o>
3
#4327

(ywvvRLtvy aras-37)
FavId PviavIS > £%1

73




15866—-30
123 cm? SENSING PLATE

m —f M AR A A A A AL AL AL A AL A AL AAL AR LA AL AL R LA A LA AR B L AR SN ]
s i 0 1 .9
)
GROUNDED
SHIELD
q WAL e e e e e e e e e e e S e e e R R A S S S SN S S S
DSOS GBS SR O EEHOEOHOSGO 00 G0 00.900.9.0.9.0.9.04

PC CARD WITH BUFFER
AMP AND FANGE SWITCHING CONNECTOR

Figure 5-3. Cross section of the TPM sensor head.
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threshold" logic signal. The comparators each drive an RS latch (U11 or U12) which provides a
5-ms lockout before another pulse can be detected. The microprocessor resets the RS latch after
5-ms and also stores the pulse count in memory. The positive and negative threshold levels are
set by digital-to-analog converters (U29, U30, and AR13 or U31, U32, and AR14).

The pulse width detectors use the "above-threshoid" logic signal to gate a 100-MHz clock
(U13) into a counter (U15, U16, and U17 or U18, U19, and U20). The counter then counts until
the signal pulse drops back below the threshold setpoint at which time the 100-MHz clock is
gated OFF. The width of the pulse is then the counts in the counter times 10 ns. The
microprocessor stores the counts in memory (via bus buffers U24, U25, and U26) and resets the
counter at the end of the 5-ms lockout.

The peak-amplitude detectors each consist of two stages of peak amplitude detection
where the first stage (Q4, QS, C2, and AR1 or Q6, Q7, C12, and AR4 of Figure 5-5) has a very
fast risetime and consequently a rather fast decay time. The second stage (AR2, AR3, and C7 or
ARS, ARG, and C17) has a slower rise time and hence a slower decay time but is fast enough to
detect the peak amplitude reached by the first stage, and has a decay time which is slow enough
to allow the microprocessor to read the peak amplitude by means of the A/D converter. The peak
amplitude deteciors are really two stages of peak reading voltmeter which allow the amplitudes
of 20-ns to 10-ps pulses to be read by the microprocessor. The output signals of the four peak
detectors are multiplexed (U1 and U2) and sent to an analog-to-digital converter. The detectors
are reset to zero at the end of the 5-ms lockout by Q1 and Q2.

The microprocessor and its interfaces consist of a radhard 80C85 (U40 of Figure 5-6)
with 2K of CMOS RAM (US53), 2K of CMOS EEPROM (U52), 2K of CMOS PROM (U48), 8-
bit A/D converter (AR20, U49, U60, U61, U42, and U50), and a parallel interface to the system
controller (US55, US6, US7, US8, U59, and U62).

Telemetry data provided by the TPM is measured anytime that the external signal is
above the threshold setpoint (whether caused by an arc or a spacecraft transient) and is
accumulated over a 4-s time period. The data provided by the TPM are as follows;

Data from the external antenna:

. No. of positive pulses above threshold

. No. of negative pulses above threshold

. Amplitude of the largest-amplitude positive pulse
. Amplitude of the largest-amplitude negative pulse
. Width of the largest-amplitude positive pulse

. Width of the largest-amplitude negative pulse

. Amplitude of the widest positive pulse
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. Amplitude of the widest negative pulse
. Width of the widest positive pulse
. Width of the widest negative pulse.

Data from the internal antenna:

. Amplitude of the internal pulse corresponing to the largest-amplitude external
positive pulse

. Amplitude of the internal pulse corresponding to the largest-amplitude external
negative pulse

. Amplitude of the internal pulse corresponding to the widest external positive
pulse

. Amplitude of the internal pulse corresponding to the widest external negative
pulse.

General data:
. Relay status (readback of relay setting command).

5.2 BREADBOARD TEST RESULTS

The TPM was tested in a metallic vacuum chamber using real arcs {rom a dielectric
sample. The test setup for performing this test is shown in Figure 5-7. The dielectric sample
was irradiated with a 15-keV 1nonoenergetic electron beam, causing it to charge up and arc
approximately every 15 s. The external antenna had full view of the vacuum chamber interior
while the internal antenna was mounted behind a grounded plate. The replacement current to the
dielectric sample and the output of thé external antenna's buffer amplifier were viewed on an
oscilloscope.

Typical waveforms and data produced by an arc are shown in Figure 5-8. The
replacement current rings for approximately 1 us and is zero from then on (Figure 5-8(a)). The
buffer-amplifier output goes negative and then positive within 1 ps (Figure 5-8(a)), after which it
rings out at a low frequency (Figure 5-8(b)). The initial negative and then positive signal is in
response to the radiated E-field generated by the arc and the low-frequency ring out is the
response of the flat-plate antenna and the buffer amplifier settling out to a lower steady-staté
E-field (the arc lowers the voltage on the dielectric sample and therefore lowers the E-field that it
generates). We do not have enough data to determine if the low-frequency ring-out is associated
with all arcs. If it is, then this might be a characteristic that could distinguish arcs from other
spacecraft transients. Spacecraft transients woulZ ..ot be expected to change the steady-state E-
field seen by the antenna.
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Figure 5-8. Typical waveforms produced by an arc.
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The pulse-characterization circuitry interpreted the signal from the buffer amplifier as a
negative pulse of 2.1 V and 100 ns, and a positive pulse of 1.11 V and 180 ns. Since the pulse-
characterization circuitry is blanked for 5 ms after a pulse occurs, the low-frequency ring-out is
ignored. The internal antenna picked up a signal that was lower in amplitude by a factor of >3
and therefore the algorithm of "external > internal" would have interpreted this data as an arc.

A test was made to simulate a normal spacecraft transient where a 28-V dc relay coil was
actuated. The TPM responded to this transient and the output of the buffer amplifier showed 1 to
2 us of high-frequency noise, after which it was zero. The low-frequency ring was not present.
This particular test was not performed in a manner suitable to evaluate the “external > internal”
algorithm.

The TPM was also tested with pulses of known polarity, amplitude, and width injected
into the pulse characterization circuitry and with arcs created inside the vacuum chamber as part
of the breadboard demonstration. The telemetry data read out on the GSE correlated closely with
the injected pulses. When arcs were created inside the vacuum chamber, both the internal and
external antennas detected the arcs. The amplitude detected by the external antenna was
approximately 1.5 times higher than the amplitude detected by the internal antenna; therefore, the
"xternal > internal" algorithm determined that it was an arc.

The cables between the two antennas and the electronics were interchanged so that the
electronics for the internal antenna would receive the larger of the signals when an arc occured.
The algorithm determined that it was not an arc since the internal signal was larger than the
external signal. In this configuration the TPM never detected what was interpreted as an arc.

5.3 FLIGHT HARDWARE TEST RESULTS

" Initial testing of the flight TPM revealed thai the sensitivity of the TPM was lower than
expected (200 V/m instead of 10 V/m), especially for narrow pulses (<100 ns). This was mainly
due to higher capacitance to ground in the flight design of the antenna plate and front-end
electronics circuitry. Increasing ihe spacing between the antenna plate and ground, and
bootstraping the ground plane under the front-end electronics circuitry heiped the sensitivity but
made the ant=—na prone to oscillations and/or ringing; therefore these ideas were abandoned.

It was determined that the main problem was in the design of the peak amplitude
detectors. The original design used a very fast diode (IN5711) to charge a 39-pF capacitor as the
first of three pulse-stretching and peak-detecting stages. At low signal levels (<200 mV), the
impedance of the diode is approximately 25,000 ohms giving a time constant of approximately
1 us which is way to slow to detect 10-ns pulses. The diode was replaced with the Q4-Q5
amplifier of Figure 5-5 charging a 180 pF capacitor (C2 of Figure 5-5). This increased the
sensitivity to approximately 20 V/m; however, this final design was never completely tested. A
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decision was made not to expend any further program resources on the TPM and therefore the
TPM hardware and software were never completed.

It is estimated that the TPM would consume 6.4 W (7.6 W from the spacecraft bus) and
have a mass of 1.8 kg in its final configuration. The controller, ESA, and SPMs only consume
5.6 W from the spacecraft bus; therefore, the TPM also represents a severe power penalty for an
instrument that is only intended to operate as a backup for the ESA and SPMs. A flight TPM
antenna assembly i< shown in Figure 5-9 and a flight input buffer circuit board in Figure 5-10.
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Figure 5-9. A flight TPM antenna assembly.
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Figure 5-10. A TPM input buffer circuit board.
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SECTION 6
CONTROLLER

The controller provides autonomous control of the FMDS relative to the remainder of
the satellite, and also ties together the other units of the FMDS. The "brain" of the controller is a
microprocessor which contains the algorithms necessary to interpret the data from the sensors
and command the plasma source to turn ON when spacecraft charging is occuring. It then
monitors and maintains the stability of the operation of the plasma source. The controller turns
the plasma source OFF after a programmable time-out, when the emission current from the
plasma source has been less than a threshold value for a specified period of time, and/or the
ambient electron environment returns to a quiescent condition. The controller has the ability to
accommodate certain instrumental faults and failures and to adjust instrument parameters. It is
also the command and telemetry interface with the satellite.

In this section we describe the hardware design and software architecture for the FMDS
controller. Flow charts of the major software routines and algorithms are also presented.

6.1 CONTROLLER HARDWARE DESIGN

Figure 6-1 shows the hardware architecture of the FMDS Controller. It is Cesigned to
survive 10 years at geosynchronous orbit from both a reliability and radiation standpoint. It
contains a watchdog timer for CPU errors; redundant storage, error checking, and correction for
RAM bitflips; instrument mask, powerdown, and subroutine timer for instrument failures;
EEPROM write capability for altering algorithms and setpoints; and redundant command
checking and command interlock for command errors or bitflips during transmission. It does not
contain any hardware redundancy.

The design employs two seperate HS80C85RH microprocessors: one microprocessor
("ESA") services the ESA, producing a "vehicle potential” signal; and the second microprocessor
("master") serves the functions of operating the plasma source, maintaining command and
telemetry contact with the spacecraft, and determining when to activate the plasma source based
on inputs from the ESA processor, SPMs, and TPM. This two-processor approach was chosen
because the comparitively heavy total computational requirement (which is dominated by
processing ESA spectra to determine the vehicle potential) makes it impossible for a single
microprocessor to handle the job. The use of one processor for the single activity of processing
ESA data is a logically desirable approach which avoids excessive interrupts of the multitasking
executive routine of the master microprocessor..

EEPROM (Electrically Erasable Programmable Read Only Memory) is used instead of
the combination of PROM (Programmable Read Only Memory) and RAM (Random Access
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Memory) that we have used in previous spaceborne systems. In these previous systems, default
set points and logic decision thresholds were contained in PROM and were copied into RAM on
system powerup. The RAM values were the ones actually used by the system, thus permitting
new values to be uploaded into RAM from the ground (via a RAM-write command). Because of
the extent of this RAM and the criticality of its contents, seperate rror-correcting hardware was
required to avoid system errors which could result from cosmic-ray-induced bitflips. The
approach for the FMDS Controller exploited the availability of the radiation-hardened CMOS
EEPROM from Sandia (SA2999). Both the FMDS operating algorithms and the default set
points are housed in the EEPROM. This approach has several substantial advantages: (1) the
amount of RAM is minimized; (2) the probability of bitflip-generated hazards to the system is
small enough that seperate error-correcting hardwzre is not required, and a simplier measure
provides more than adequate protection (i.e., storing critical parameters in three locations and
using majority voting); (3) virtually all parts of the software can be rewritten from the ground,
rather than just selected set points; and (4) a system reset or power outage will not cause
unwanted default set points to reappear. The Sandia EEPROM is specified for 10,000
erase/write cycles and a 10-year retention period.

The PROM contains routines that are very basic and critical to operation of the system
(initial boot up, commands and telemetry, and EEPROM write). If these routines were in
EEPROM and the wrong location was accidentally written to, it would be a catastrophic mistake.

Telemetry data to the spacecraft is provided when it is requested by the spacecraft. This
is done with DMA (Direct Memory Access). The DMA approach offers a simple interface with
flexible timing to the spacecraft. The controller accepts one command byte every cycle (every
4 s). If commands are sent at a faster rate, then some of the command bytes wili be lost.

The controller also cor.tains I/O ports for the transfer of digital data between itself and
the other units (ESA, SPMs, TPM, and plasma source) and a multiplexed analog-to-digital
converter for digitizing analog parameters from the other units.

The master micropocessor schematic is shown in Figure 6-2, where U1 is the radiation-
hard 20C85 microprocessor; U2 is the lower 8-bit address latch; U3 and U4 are the RAM; U8 is
the PROM; and U13, U14, U15, U16, U17, and U18 are the EEPROM. In addition, U19, U20,
and U21 are memory chip select decoders; U12 is a latch that controls the erase/write of the
EEPROM; U22 forces the correct address bits and control signals unto the bus for DMA; and
U23 is a bidirectional address/data bus buffer.

Figure 6-3 shows the ESA microprocessor schematic, where U40 is the microprocessor;
U48 is the RAM; U41 is the PROM; and U45, U46, and U47 being the EEPROM. U52 is a latch
controlling the EEPROM erase/write; US3 is the lower 8-bit address latch; U54, U65, and U56
are address decoders; and U60, U61, U62, and U63 are I/O ports to the master microprocessor.
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The serial to parallel shift register, U57, inputs data from the ESA, U58 is the ESA data input
port, and U59 is an output port to the ESA for the data clock and to the master microprocessor
for handshaking (ESA R/V).

/O address decoding is provided by U134, U135, U136, and U137 of Figure 6-4.
Output ports U132 and U133 are used for the digital commands to the ESA, U130 is the output
port for turning the valves and plasma source inverters ON/OFF, and U131 is the output port for
turning the sensors (ESA, SPMs, and TPM) ON/OFF. Counters U139, U140, and U141 divide
the clock signal from the master microprocessor for timing purposes, including the 4-s interrupt
and watchdog timer. The subroutine timer and latching-solonoid timer are U143 and U144,
respectively, with U142 being the latch to turn them ON/OFF, while U148 sends a 0.5 Hz timing
signal to the ESA. Q130 resets a 16-s delay in the plasma source electronics every 4 s. If this
delay is not reset for a period exceeding 16 s, all valves are closed and all instruments are turned
OFF automatically (part of the watchdog timer).

The analog-to-digital (A/D) converter and more I/O is shown in Figure 6-5. U80 and
U81 are 16 channel analog multiplexers (total of 32 channels), U83 is a sample-and-hold
amplifier, and AR10, U84, U8S, U90. and U91 comprise the A/D converter. U86 is the input
port for the digitized analog data, U87 starts the conversion process, and U88 stores the channel
address for the analog multiplexers. U82 is an output port that turns the plasma-source power
supplies ON/OFF and selects their operating setpoint.

Figure 6-6 shows the interface with the TPM and the command/telemetry interface with
the spacecrait. U111, U112, U113, and U114 are the I/O ports that transfer commands and data
between the TPM and the master microprocessor. Optical isolation with the spacecraft for the
command/telemetry interface is provided by U100, U101, U102, and U124. Itis assumed that
the optical isolation for the telemetry data line will be provided on the spacecraft end of the
interface and U119, Q1, and Q2 form a line driver to drive that optical isolation. U103, U106,
and U108 are edge-triggered D-type flip/flops to provide noise immunity for the incoming
signals. U104 converts the serial command byte to parallel and U105 is the command input port.
Flip/flops U107 and U110 and shift register U109 control the DMA timing whici, is shown in
Figure 6-7. U115 is the parallel to serial ielemetry shift register, U116 is the counter that selects
the telemetry word for the DMA, U118 is the port that forces the counter data unto the memory
address bus, and U123 is the input port for the DMA counter. U117 is an input port for the SPM
ranges and the ADC conversion complete (not CC) signai.

The command timing shown in Figure 6-7 is straightforward and involves a command-
enable signal, a command clock, and the command data. The command-enable allows eight
clock pulses to shift the eight data bits into the shift register. The clock can be either a
continuous stream of pulses or an 8-bit burst. The trailing edge of the command-enable signal
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sets F/F U107A to indicate to the master microprocessor that a command has been received.
U107A is reset by the master microprocessor after it has read the command. The commands that
the FMDS will accept and the telemetry data it provides are listed in Appendix A.

The telemetry timing is more complex because of the DMA function. Whenever the
spacecraft issues a frame-sync pulse, F/F U110A is set which interrupts the master
microprocessor, causing it to load the DMA area of memory with a new set of telemetry Gata,
provided the last set has all becn sent. After updating the DMA memory, U110A is reset and a
DMA cycle is initiated. F/F U107B is set which requests the bus from the master
microprocessor. When the master microprocessor relinquishes the bus, shift register U109 is
enabled which starts sh:¢ting "1s" down its outputs. These "1s" successively force the counter
data unto the address bus, clock the data in memory into the output shift register (U115),
increment the DMA counter (U116), and reset F/F U107B which terminates the bus request
allowing the master microprocessor to resume operation. The first telemetry data word is now in
the shift register and can be clocked out by the spacecraft at any time. When the present word is
clocked out, the trailing edge of the telemetry enable signal will initiate another DMA cycle so
that the next telemetry data word will be ready for the spacecraft.

The mechanical packaging of the controller is on five PC boards which are contained in
a8.38-cm W x 15.24-cm D x 13.97-cm H (3.3 x 6.0 x 5.5 in.) box as shown in Figure 6-8. The
box has a mass of 1.415 kg (3.12 Ib) and consumes 0.86-W of power.

6.2 CONTROLLER SOFTWARE DESIGN

The software design is heavily modularized, consistent with modern design practices. An
"executive” routine is present, which simply calls other modules in sequence. The advantage of
this approach is that individual modules can be altered, added, deleted, or relocated with very
little or very minor alteration of the overall code. The software is realized in a machine-intimate
hign-level language, "C"; however, some portions are coded in assembly language for additional
speed and memory-use efficiency requirements. A high-level language was used because it is
essentially self-documenting, while even well-documented assembly coding is frequently
impregnable and not maintainable.

6.2.1 Master Microprocessor

The master microprocessor (UP) is responsibie for interrogating the several charging-
detection instruments, deternining whether or not a charging hazard exists, controlling the
plasma source, and communicating with the ground (i.e., making telemetry data available and
receiving and executing commands). The ovcrall organization of the software is shown in
Figure 6-9; we discuss the individual sections in a little more detail in the sections below.
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Figure 6-8. Controller electronics box without the box end-plate.
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Figure 6-9. Overall organization of the FMDS controller software.
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6.2.1.1 Powerup: main
On powerup, an initialization routine copies initialized data from PROM to RAM and

jumps to the C function called main, shown in Figure 6-10 (we will use italics to denote C
function names). Main is responsible for powering up the instruments (using the routine called
"powerup") and for correcting any RAM bitflips that have occured since the previous 4-s cycle.
Two flags are tested in main: one (auto-start) allows for enabling or inhibiting automatic
instrument powerup when FMDS is powered up; the other (stop-flag) can be set by ground
control to prevent code in EEPROM from being executed (Figure 6-11 shows the response to the
stop-flag being set). This capability permits EEPROM-writing without the risk of incompletely-
modified code being executed. Having completed its bitflip-protection task, main sits in an
endless loop awaiting the 4-s interrupt (hardware interrupt RST 7.5). This interrupt generates a
jump to the executive routine shown in Figure 6-12.

6.2.1.2 Master Task-Calling Routine: Executive

The executive routine is the controlling force of the master microprocessor. Upon
entering the routine, the 4-s flag is checked and if it is set, this indicates that the microprocessor
did not have time to execute all of the executive routine the last time before it was interrupted
again by the 4-s interrupt. This will not normally occur, but if it does an error bit is written to the
System Status Byte (SSB). The "watchdog timer" is reset next (the watchdog timer is
implemented in hardware; if it is not reset at least once every 16 s, it resets the entire system).
The 4-s flag is then set to facilitate checking for completion of the executive. Next the executive
checks to see if a command has been received from the ground (and if it has, executive calls the
command processor to execute the command). If the stop-flag is not set, executive calls the
function exec2 , shown in Figure 6-13 (the executive functions are partitioned in this manner
because of PROM vs. EEPROM considerations).

6.2.1.3 Continuation of Executive; Exec2

In exec2, the various bits that comprise the SSB are specified, and the SSB is placed in a
data stack called stack1, the various timers that are in the code are decremented if they are
running, and then exec2 calls a function to get data from the analog-to-digital converter (ADC).
A hardware "subroutine timer" is included to protect against the possibility of the microprocessor
becoming trapped in an endless loop (in case, for example, of an ADC fault). When the
subroutine timer times out, it generates an interrupt and causes a jump to the location in exec2
just after the function call that caused the problem. Exec2 then calis the function mode_mgr,
which is responsible for maintaining the plasma source in the desired operating condition. Next,
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Figure 6-10. "Main" software routine.
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the master pP communicates with the ESA pP to gather the next data set, if one is present.
Finally exec2 gets the SPM data and (see flowchart continued in Figure 6-14) calls the hazard
algorithm. Hazard examines the set of data just collected and makes a determination that a
charging hazard either does or does not exist. If a charging hazard is determined to be present,
the charging flag is set; this will cause mode_mgr to ignite the plasma source on the next pass.

Following execution of the hazard algorithm, exec2 divides the 16-bit counters that count
charging indications and the source of plasma-source ignition indications into iupper and lower
bytes and places them on stack1. Exec2 then examines the ADC temperature-indicator data to
determine if any instrument has exceeded its temperature limit. If overheating instruments are
detected, they are turned OFF unless a ground-commandable mask bit has been set (this permits
ignoring data from a faulty temperature sensor). Exec2 then calls SPM_zero, which determines
whether the SPMs should read zero (in case the plasma source has been in operation for a
predetermined period); if they should, SPM_zero stores the SPM readings to be used as zero
offsets for subsequent readings. Finally, exec2 places the power-relay status and other data on
stack1 and calls the function map. Map takes the data in stack1 and reorders it according to a
preset priority list. The reordered data is placed in stack2; these data are then copied into DMA
RAM in servicing a frame-sync interrupt (see next paragraph). When map is complete, exec2
clears the 4-s flag, indicating completion, and jumps to the label "start" which is in main; here
the bitflip protection algorithm will be executed, and the uP will await the 4-s interrupt, which
begins the next cycle.

6.2.1.4 Charging Identification: Hazard

Hazard, shown in Figure 6-15, successively examines data from each instrument: if the
instrument’s power relay is closed, the ground-setable instrument mask bit corresponding to that
instrument is not set, and a subroutine-timer fault has not been registered. For each active
instrument, hazard maintains a software counter which determines the number of uninterrupted
positive charging indications that are required to make a charging-hazard determination. Both
these counters and the thresholds are ground-adjustable. In the case of the ESAs, the required
counts are automatically adjusted according to the ESA sweep time. The functions 4_iESA,
h_eESA, h_SPMI, h_SPM2, and h_IPS are shown in Figures 6-16 to 6-19 (h_SPM2 is not
shown since it is identical to #_SPM] except for the counter variable). (Note that these functions
are defined for flowcharting clarity only; these algorithms are embedded entirely within hazard
in the actual code.)
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Figure 6-18. SPM1 hazard-present routine.
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Figure 6-19. Plasma-source hazard-present routine.
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6.2.1.5 Servicing the Frame-Sync Interrupt: Telemetry_out

The frame-sync interrupt service routine shown in Figure 6-20 interrupts the master P
and forces a jump to the telemetry_out function. Telemetry_out copies a new telemetry data set
from stack2 into the DMA area of memory, resets the DMA counter, and initiates a DMA cycle
before allowing the JP to return to its previous activity. The DMA cycle consists of a DMA bus
request, loading a telemetry byte into the telemetry shift register, incrementing the DMA counter,
and return of the bus to the microprocessor.

6.2.2 ESA Microprocessor

The ESA uP provides the master uP not only with ion and electron spectra, but also with
a numerical estimate of the vehicle potential iESA) and a yes-no assessment of the charging
threat (eESA). Figure 6-21 is a simplified view of the ESA software. Basically, the pP spends its
time waiting for interrupts. The RST 5. interrupt causes the pP to communicate with the master
WP, either sending a spectrum and other data, or receiving an EEPROM-write command. The
RST 6.5 interrupt is used to signal the uP that one channel's worth of data is ready to be read out
of the ESA electronics. The ESA data are partially unpacked when they are received, unless any
of several error conditions are detected, in which case the current spectrum is ignored. When a
complete spectrum (16 channels) is complete, the vehicle potential is computed and the electron
algorithm is executed. On completion of these actions, a flag is set to inform the master uP that a
new spectrum is ready on its next receive-mode communication.

6.2.2.1 Computing Vehicle Potential from iESA Data

The algorithm used for detetmining vehicle potential based on the iESA data is shown in
Figure 6-22. This "distribution-function-algorithm" (DFA)4 was authored by Gussenhoven of
AFGL and Spiegel of the University of Lowell. It examines adjacent iESA energy channels to
find an abrupt increase in ion counts from one channel to the next. The algorithm calculates the
difference of counts between adjacent channels and determines whether this difference is both
large enough and of adequate statistical significance. The sharp rise in count rate is assumed to
result from the acceleration of ambient low-energy ions through the potential difference between
the spacecraft and local space plasma. If this potential difference is Vg, then no space-potential
ions can traverse the ESA when it is tuned to an energy lower than eVg. This situation creates an
ion energy spectrum which has a characteristically sharp edge below which there are (ideally) no
ion counts (some counts are, however, found in the "impossible" region between energies of 0
and eVg; these counts are probably due to spacecraft generated charges). The DFA seeks to
identify the spectral edge at energy eV by looking for a large and statistically significant
increase in count rate between adjacent channels.
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Figure 6-20. Frame-sync interrupt-service routine.
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The other algorithm which we considered seriously was a template-matching-algorithm
(TMA) which was implemented by preparing a number of templates -- dummy spectra which
have calculated edges and shapes corresponding to varying degrees of spacecraft charging. The
TMA sequentially compared the actual ion-energy spectrum with each of the templates and
produced a vehicle potenual which corresponded to the closest match between a template and the
actual spectrum.

6.2.2.2 iESA Algorithm Testing
We tested these two algorithms (DFA and TMA) using SC-9 data which was reformatted

into the FMDS channel widths and energy range. These data were accompanied by a "visual"
analysis: an estimate of vehicle potential for each spectrum, as determined by an expert. The
visual analysis served as our reference for accuraic charging-algorithm operation. The tests
indicated that the DFA was more accurate than the TMA on a spectrum-by-spectrum basis, as
shown in Table 6-1. Or a charging-event basis the DFA was found to determine charging above
threshold 100% of the time. A few spectra might not azrec, but the charging event was always
detected. Two typical charging events and a comparison of the visual and DFA determined
vehicle potentials are shown in Figure 6-23. As can be seen from tiie figure, the DFA closely
tracks the visual.

6.2.2.3 Electron Algorithm
The algorithm used by the ESA P for interpreting the ¢ESA date is shown in Figure

6-24. Itis a simple algorithm that compares the sum of the counts in the two highest energy
channels with the sum of the counts in the lower energy channels (excluding the background
channel). If the two highest energy channels contain more counts than the lower energy
channe's, then it is probable that a charging environment exists. This algorithm is based on
results by Olsen’ but has been tested (with good success) with only one day of SC-9 data.

6.3 BREADBOARD TESTING

The controller and its software were debugged, tested, and modified as the complete
FMDS system was being checked out and prepared for the breadboard demonstration.
Modifications were made as their need was pointed out by the testing or when worthwhile
improvements were uncovered. In general, it performed very well as shown by the breadboard
system test results presented in Section 10. Two notable exceptions are discussed below.

One of the major glitches during the breadboard demonstration was loss of sync for the
telemetry data and latchup of the command and telemetry UART in the controller. This problem
resulted in abandoning the UART in favor of the conventional enable signal, clock signal, and
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Table 6-1. Comparison of the DFA and TMA Ion ESA Algorithms.

SPECTRUM-BY-SPECTRUM

15866~17

THRESHOLD
ENERGY
ALGORITHM {eV) VISUAL | AGREE | DISAGREE | MISS | ACCURACY

DFA 2000 873 760 79 113 87.1%
1000 2025 1933 168 92 95.5%

448 3020 2813 120 207 93.2%

200 3819 3458 178 361 90.6%

TMA 1000 2025 1805 655 220 89.1%

VISUAL ~ NUMBER OF SPECTRA WHICH INDICATE CHARGING ABOVE THRESHOLD
AS DETERMINED BY AFGL VISUAL INSPECTION OF AVAILABLE DATA.

AGREE — ALGORITHM AGREES WITH VISUAL.
DISAGREE — ALGORITHM INDICATES CHARGING ABOVE THRESHOLL WHEN

VISUAL DOES NOT.

MISS — ALGORITHM DOESN'T INDICATE CHARGING ABOVE THRESHOLD WHEN
VISUAL DOES.
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Figure 6-23. Comparison of the visual and DFA-determined vehicle potential.
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data sighal type of interface discussed in Section 6.1. We have used this type of interface before
without the problems that were experienced with the UART.

The ion-ESA algorithm that we wrote along the lines of Spiegel's Distribution Function
Algorithm (DFA) called for subtracting the background channel counts from the other channels
before looking for a statistically significant edge. Since the count in the background channel was
equal to or larger than some of the other channels and the DFA returned a count of 1 for
subtractions that were negative or zero, then going from 1 to 3 or 4 counts after the subtraction
appeared to be statistically significant, when in reality there was no edge at that channel in the
raw data. When the subtraction of the background channel was eliminated, the DFA determined
the correct level of spacecraft charging.

6.4 FLIGHT TESTING

The controller hardware and software were tested on the bench before being integrated
with the remainder of the FMDS subsystems. One major hardware problem and one major
software problem were discovered and fixed during this testing. Both problems were associated
with the EEPROM. The hardware problem resulted in the complete contents of the EEPROM
being lost. This problem was discovered the first time that we had the software loaded into
EEPROM. We shut the controller OFF and went to lunch. When we returned approximately
one hour later, the contents of the EEPROM was all "0"s. This problem was traced to the fact
that the +18 V to the EEPROM (used during write and erase operations) normally had no load on
it and therefore decayed with a very long time constant (hours) when the power was turned OFF.
With the +18 V present and the normal operating supply (+5 V) at zero, the contents of the
Sandia SA2900 EEPROM are lost. This was verified by separate tests-on an engineering model
SA2900. The problem was remedied by adding a 1K resistor from the +18 Vto the +5 V
powering the EEPROM.

The software problem with the EEPROM resulted from the microprocessor being
interrupted by the TRAP interrupt during the time that the EEPROM write routine was being
executed. The TRAP interrupt doesn't save the contents of any of the registers and also changes
the stack pointer; therefore, the software never returned to finish the EEPROM write routine,
causing portions of the software in EEPROM to be erased and not rewritten. The software was
changed to prevent any of the interrupts from interrupting the microprocessor during the
EEPROM write routine.

The remainder of the bench testing of the controller consisted of fixing minor coding
problems in the software. Software integration problems with the other FMDS subsystems are
covered in Section 10.
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SECTION 7
PLASMA SOURCE

The FMDS plasma source consists of three subsystems: the plasma generator, the
power electronics required to operate and control the plasma generator, and the expellant
storage and control assembly. The plasma generator was developed under a Hughes IR&D
project and this technology was provided to the FMDS program for the flight plasma generator
design.

7.1 PLASMA GENERATOR DESIGN

The plasma generator is regarded as the major element of the system, since its design
and operating characteristics determine the requirements for the other two elements (power
supplies and feed system). The plasma generator has the general characteristics shown in
Table 7-1.

The plasma generator (Figure 7-1) is a compact arrangement of a hollow-cathode,
keeper and anode electrodes, a magnetic structure, and a ground shield. Xenon/hydrogen gas
flowing through the plasma generator is ionized by bombardment with electrons released from
a low-work-function surface within the hollow cathode. The ionized zas flows out of the
plasma generator, providing a medium density (=101%/cm3), inert-gas plasma to neutralize
differential charge buildup between various surfaces of the spacecraft, and aiso to form an
electrically conducting "bridge" between the spacecraft and the natural space plasma.

A <1-s plasma generator turn-ON time is achieved by gas-burst ignition.
Approximately 1000 V is applied between the keeper and the cathode, and then a burst of
high-pressure gas (few hundred Torr) is admitted to the cathode. The keeper voltage falls
almost immediately (<1 ms) to <20 V. We believe that the ignition process consists of the
formation of an arc that runs on a small spot on the insert until the insert temperature is raised
to the point of thermionic emission. At this point, cathode operation undergoes a rapid
transition to a low-voltage hollow-cathode mode. The total energy input during the high-
voltage portion of the ignition transient is about 0.25 J, which is nondestructive to the insert.
The gas pressure and flow settle out to the nominal 0.5 sccm condition in approximately
120 s.

The rolled-foil insert consists of 0.013-mm- (0.5-mil)-thick rhenium foil with a sputter
deposited linear platinum grid deposited on one side. A Hughes proprietary emissive mix is
sprayed on both sides of the foil to provide a low work function medium for electron emission.
The rhenium foil is then rolled into a cylindrical structure for insertion into the cathode.




Table 7-1. SPACECLAMP Plasma Generator Characteristics.

1923418

Parameter Value Unit
Expellant flow rate <40 mA Equiv
Discharge voltage <40 A\
Discharge current <250 mA
Keeper voltage <25 \'
Keeper current <400 mA
Total power (run) <10 w
Total power (conditioning) 20 w
Ignition time <1 S
Expected lifetime >1200 Hours
Expected restart capability >1000 Starts
Ton-emission current (max) >1 mA
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Figure 7-1. Simple schematic of the plasma generator.
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The flight design of the plasma generator is shown in Figure 7-Z and an exploded view
of a flight source in Figure 7-3. The plasma generator is designed as a hermetically sealed
unit so that it can be evacuated (through a remove-before-launch cap) and operated during
ground testing and spacecraft integration. The cathode, keeper, and anode are all electrically
isolated from the outer shell so the return current from the spacecraft can be measured.

7.2 EXPELLANT STORAGE AND CONTROL SYSTEM

The expellant feed and contro! system consists of the storage tank, valves, pressure
regulator, flow impedance, and pressure transducers required to provide the source with gas-
burst ignition and a steady-state 0.5-sccm flow rate (Figure 7-4). The storage tank is a
Depariment of Transportation (DoT) approved pressure vessel (rated for transportation on
commercial aircraft) with a volume of approximately 2 liters and containing 90 standard liters
of xenon and 10 standard liters of hydrogen at a pressure of approximately 4.1 MPa (600
psia). The tank is fitted with a pressure transducer (to indicate the quantity of remaining
expellant) and a manually operated fill valve.

The xenon/hydrogen flows from the tank through the high pressure valve, which is
intended to save the expellant if a slow downstream leak should develop, to the pressure
regulator. The pressure regulator reduces the xenon/hydrogen pressure to a constant 69 kPa
(10 psia). The 69 kPa is applied to the upstream side of a constant flow impedance to
maintain a steady state flow rate of 0.5 sccm. The low-pressure valve is the valve ihat actually
turns the flow to the plasma generator ON/OFF.

The low pressure transducer measures the pressure in the gas-burst volume and is used
to indicate if the low-pressure valve is open or closed. With the valve closed, the pressure in
the gas-burst volume builds up to 69 kPa which indicates that the valve is closed. If the valve
is open, then the pressure in the gas-burst volume is approximately zero and indicates that the
valve is open. The gas-burst volume provides the burst of gas required for gas-burst ignition
and the bypass valve is used to quickly fill this volume. The low-pressure valve and the bypass
valve are never both open at the same time,

The tank is removable from the remainder of the FMDS so that it can be filled and/or
transported separately. Sectional drawings of the flight valves and flight pressure regulator are
shown in Figures 7-5 and 7-6, respectively. The same valve is used for both the high-pressure
and low-pressure portions of the feed system.

7.3 PLASMA GENERATOR ELECTRONICS DESIGN
The Plasma-Generator electronics block diagram is shown in Figure 7-7. It contains a
discharge supply, keeper supply, and a heater supply for operation of the plasma generator, a

123




L
N i
pt IR CATHODE WITH
o ROLLED-FOIL
INSERT

Figure 7-2. Cross section of the flight plasma generator.
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Figure 7-3. A flight plasma generator in an exploded configuration.
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Figure 7-5. Cross section of the flight valves.
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Figure 7-7. Block diagram of the plasma generator electronics.
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bipolar log-electrometer to measure the emission from the plasma generator (return current
from the spacecraft), valve drivers for the valves, and analog telemetry signal conditioning.

7.3.1 Power Supplies

The plasma generator power requirements are relatively low (<20 W), which rules out
the need for complex inverters in order to obtain reasonable efficiencies. Therefore, half-
wave flyback inverters are used for all three power supplies. The half-wave flyback inverter
(Figure 7-8) is the simplest type of inverter which provides isolation and high reliability while
requiring a minimum number of components. Since it operates in a current-source mode
rather than a voltage-source mode, it exhibits inherent output short-circuit protection. Only
four power-handling components are required:

. One transformer (T1)

. One transistor switch (Q1)
. One blocking diode (CR1)
. One filter capacitor (C1).

The flyback inverter functions by cyclically storing energy in the magnetic field of
transformer T1 while Q1 is turned ON and then transferring this stored energy to T1's
secondary through diode CR1 to the output filter (C1) and the load when Q1 is OFF. By
varing the Q1 ON time, the amount of energy stored and transferred to the load in each cycle
can be controlled or regulated in proportion to changes in input voltage, output load, or
commanded setpoint.

The heater supply is shown schematically in Figure 7-9. The supply produces a
maximum constant-current output of 10 V at 3 A and is controlled by an integrated circuit
(U1) which is a pulse-width-modulator (PWM). Regulation is accomplished by sensing the
output current with T3 and U3 and feeding this signal back to the PWM. The output of U3 is
also used to provide the current telemetry signal.

Optical isolation (U2) is used to isolate the output of U1 which is referenced to control-
and-telemetry common from the gate of the switching MOSFET (Q1) which is referenced to
input-power common. Q2, Q3, and Q4 interface the output of U2 with the gate of Q1. The
peak current through Q1 is limited by sensing this current with T2 and feeding it back to the
current limit input of U1,

The voltage telemetry is derived from a seperate winding on the output transformer
(T1D). A synchronous sample/hold circuit (Q5 and Q6) is used to minimize the effects of the
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Figure 7-8. Simplified schematic of a half-wave flyback inverter.
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leading-edge transient spike. This telemetry voltage is also fed back to the PWM to limit the
output voltage under open-circuit conditions.

The ON/OFF command and the setpoint command from the controller are buffered and
decoded by U4. U4 is a CMOS quad switch allowing it to function as normally open
switches.

The discharge supply design shown in Figure 7-10 is very similar to the heater supply.
It produces a constant-current output of up to 0.3 A at up to 40 V and an open circuit output of
100 V. The output voltage is limited to 100 V via VR6 and U6 feeding back to Ul. The
vcliage telemetry signal is not fed back to Ul. The peak transient current to the Plasma
Generator is limited to less than 1 A by way of Q7, Q8, Q9, and R42.

The keeper supply is similar to the discharge supply and is shown in Figure 7-11. It
produces a constant-current output of up to 0.4 A at up to 30 V with an open circuit voltage of
1000 V. The 1000 V is produced by a patented Hughes circuit which automatically turns
ON/OFF. If the output is open circuited, then the voltage on T1E will flyback to at least 100
V higher than the input bus voltage, appling 100 V to T2 which is a 10:1 step up transformer
which produces the 1000 V output. As the output is loaded down, the flyback vbltage on T1E
drops below the input bus voltage removing all drive to transformer T2. Peak transient
currents to the plasma generator are limited to 400 mA from the 1000 V through R2 and to
less than 1.5 A from the low voltage section through QS, Q4, and R4. Under open-circuit
conditions, QS turns ON turning Q4 OFF and placing R4 into the circuit. Approximately 30 s
after the plasma generator ignites, Q5 turns OFF which turns Q4 ON removing R4 from the
circuit. Output inductor L1 also limits transient currents and provides instantaneous voltage
spikes to the keeper if it should try to extinguish.

7.3.2 Bipolar Log Electrometer

The bipolar log electrometer measures currents in the ranges of -1 HA to -10 mA and
1 pA to 10 mA. It has a 0 to 5-V analog telemetry output with zero-V out equal to -10 mA,
2.5-V out equal to -1 pA to 1 pA, and 5-V out equal to 10 mA.

Current is converted from being linear to being logrithmic via the base-emmitter
junction of a transistor (Q1A or Q2A of Figure 7-12) in the feedback loop of an operational
amplifier (AR1). Ql, Q3, and ARJ are used for positive currents and Q2, Q4, and AR2 are
used for negative currents. Q1B (Q2B) and R12 (R27) provide temperature compensation for
the circuit. Q3 (Q4) is a constant-current source that sets the low end of the logrithmic range
(1 pA) while R13 (R10) sets the high end of the range (10 mA) by adjusting the gain of
amplifier AR3 (AR2) The outputs of AR3 and AR2 are summed by amplifier AR4 to provide
the bipolar function.

133

=




-onewayos A1ddns aSreyosiq Q1-L am31g

v o/'® I AX -— W Uﬂash‘v‘nﬂ( T
WO O A
» e sgwT 3¢ 1 (@313103dS ASIMEIHLO SSIINNT :SILON
v 00¢66 LLseeid </~ (e £Zo7 wogZr> RS MY Ix¥ Syasrs
SILEL AR % M%mﬂ*m@l E 227
J1LVYN3HOS afaln] 3 % AaY I#id nn P s T e o 4
AlddNS 39HVHOSIA EXlad ks v Tewsvn Z 2 A
SAN4 . . L5 5l sivomr q”w.ai.o.m-w &cy oix o> ANE + P
-!ogﬂwm‘ll ”mNIU:I. ol T L e rptan uN..w [ $~\ ’
S cn " < Gt
QEE; _ B9 0 aApSh AW
reu  eaiwerskl  SWISNN o ¢ sererz
o
-eots
#80/m0
<70

AOSTAS g 405

« gv
o 9

W euF w AS

12-2022 592

E X1

maliverN
wIuvan al

9008 ST ALY T

WOLE o YodI TS
20T Avredi¥ oL *

And 200
F o2 41704

Lt b o2 o e




oo s sy A 3w
¥ 10€6601 Lisee,a eveper | (Gu)yobdy. A N £ S (021310345 ISIMHAHLO S5IINN) 'SILON
QLLYWHIS hlakd “NWWNMI\. woqxws 'X5 '‘mpy 1w tmiskre v o
Ko,
Ad4NS H¥3d3IIN 0 /b)) TR d a3y e s rt ot et P
San4 sl N A S Fezizor v
7173308 ) sarmes . o
{ ! | Faemrs o 310wy q.-.”i!-”- LT 'y e arz ¥ x
EINOLYVORYY HOWVIT I | P 154
ANPEPICD LTSNy SINDM SIHOOH i A Soran | feler o £ un s 4 e
,
POt 4
£ BELVYAD e
ON DMAFIN I ON WS4 AT 6 ¢y BIL
¥ 1yve 1 ) cn S
A
ANIINSE B ITTEIATE, L
,
- & 2 g tefer %
km w % 74 “v ' 0 . St
b s - - Crers sovwrna)sn ¥ \
biad i Tadl 1 4 t 43
\l.w M T Pl 2 W.ﬂ ﬂw... mons %S ..—- $i-inas
rou 4. ,— P !nul T qv e
N 208 —f— A o PR ! 4o n #
faad T Soeorc W Xe ar zﬁ LES 4 N o e
si [l s ChE 15 fugk %4 B
e o <+t htd - o ﬂ.m- ﬁ@ we |27, 7y :u \\l
4t n
v N . ¥ r EREE N Wy - ™
Totan 30 N [ 7 MR by { Lo v . %
e & 3] ool ’ 9w 1
e 1 LR i 2..."\ £ * i v ¥ A L i L]
v Lld — ﬂs.
X242, 7c e y .1 6 - 7hes Govexp
& ety /. bl 114 e |
Preafatiperr oot of% ﬂ -y ﬂan{ s oeelyd Frdnsy
"> s + A
e i 1L o e Ui - SnTORE
o 0 8 a5 O e
P—ravey o somef T
AN w g 7, it !L-tu-*
P A A ey ) hat 4 iadtaniid P e &-Tokl
x re’d L] D L) 4
”a ¥ L4
- v} 4
.F S LF - ~»\to ” - !& Rt e -T\Tl T # e
> 1 - ) L Y AN et s
o!! o rImed N % as
Prsvedu v anlitn o> [
R e e > %..w.-u ke
- AL
TS et eits [ o aue
hadd — 7-.“.-..
WEMay BATYA
~owl
Ao
WJH #7350
Lrd
= - el Y
3 = Mxlnﬂs SAN LY
G
M I L2 J ——— - (3:v29)
> SIS 4heal
a w V wwy
i &N .P ‘uh
$—t—4
withe
W ©pd w12
\. -
C«\\lm.tv\.. AT e rivdeavierwt |y hadd
Shougiv] IV 1 NOU4WI$I0
[
.
* v

135




. 4
.
J912U101139 *
3 [o Soj Jejodiq a1 Jo onewWaYdS “T{-L N1y
120 ¢ g3 | — 3w 1 O YOI vedY
528 O w0 035N AT
$0SE60! P XA TA ol e - 104 v [@311D3dS ISIMBIHLO SS3TINN) (310N
39 v X ld )
Fondiel okew? ‘25 ‘g gav saeasrdd 3
WA o A% | Tzt
DILYNIHOS o - <% o7 ]
¥313N0WLII T3 907 oy WU e
m<l—0&— SOW 4 i e g P aw ane !
¥ M- . SPIAISNY Ul T
€ M INOVY VIS : wOrsn
AMBIIIOD) LINWINTY £INOCW nmu-}mﬁa: | EVNH;%H.“!«M“MEQ uﬂ. ..w.:
189 Siwve .
24
V.H_ ulnﬁ._ S ngﬂﬁx d e —ceaun- §o x> LY
93
£
e
Sy
@240 4oM DN 1V
Iwus_seuvefic Induisls |
- T T
" e dtn
s capiss - T bz 3 mm Peyiy
xid we MI £7 A IS L IE 4 TS
= W gy r(iku sopors um s o -
). rr2
-y b} - ~ ———— o — -
B Y Rty 0 75 ol T
e Pl 3 ¥ Fowacsd ruFa L
[ r< ...\.-V)\\(“).n'oluuw\ui c-dext S OV AL g e WM“ 3
o R Re LL ‘J N 7.1
* ol ¥
oY - > asers v g Sard Nu. p ) e % § prsen
o k_ _ Pt et Nrx | ren
aac e Jest el w7 arze .
> s - VA Fi .
\n.am { P.u.wv.a HT !
\\Wt .wru‘n - ~- " i M -»w.; ‘ — 6
. .
o Tl s, ] kT [T T SO =
3 —t
iy vE |fEE ¥ i (L iy o b g
5, b : - ! =
. . 4 > . At . 3 L
¢ R —s X Y rev PBaind® ImWn oy T .lnlmu o N {
¥ Irasarséd . - e EPS] € H a4 gy . b s P o
- e Siapanac B - 1
are 26 3..0..* 3 CeF
o be v — ¢z - s0x® Y
r” \s.-uuuw vy _ i ‘T -goxl l ) .- snmm.o PAravees
yolsmt ArnS
2l 7z ...Gnmw.c.ﬂw; .nw.nw .:%« vz sreve g ok
N e 1T
A o vowE ey
ws, »x

AAGHIAD p F T

—— (”l' r3
T | 1
wnFx wares  TTT AL Zevhtat NS4 P
we—eb apie 1 FuA ] &> .
s T S ot e Y -
¥ e rkv ‘Ch /w )
LS elad
'y S
”
ot 2
A &
1ev i
ver3 ¥
nnuM

>
T
Iy




Figure 7-12 also shows the signal conditioning for the plasma generator electronics
temperatures and the feed system pressure transducers. Shunt regulator VR7 provides closely
regulated 5-V power for both the temperature and pressure measurements. The temperatures
are simply measured with a thermistor (R63 or R64) in series with a fixed resistor (R65 or
R66) providing a temperature sensitive voltage divider of the regulated 5 V. The regulated
5V is also applied to the strain gauge bridges of the pressure transducers.. The floating
voltage signals from the pressure transducers are amplified and converted to single ended
signals by AR5 and AR6 or AR7 and ARS.

7.4 BREADBOARD TEST RESULTS

During the FMDS breadboard testing we used a cylindrical Langmuir probe, which was
7.5 in. from the plasma source, to measure the plasma density. The electron density was
measured by biasing the probe tip to collect electron current, which was then used to estimate
the electron density. When the source was not biased relative to the vacuum chamber
(simulating an uncharged condition) we measured an electron density of 1.5x108/cm3 and an
electron temperature of approximately 1.5 eV. When the source was biased to 30 V relative
to the vacuum chamber, tue resultant net ion current was about 1 mA, and the electron density
and temperature were about 9.5x107/cm3 and 0.8 eV respectively.

The net ion emission current from the plasma source was measured during ignition and
at its throttled setpoints. The emission current was measured by biasing the plasma source
30 V positive relative to the vacuum chamber walls. A plot of net emission current versus
bias voltage is shown in Figure 7-13 for the nominal operating point. Figure 7-14 shows a
stripchart recording of the emission current during ignition. The emission current starts at
0.4 mA, falls to 0.1 mA at 5 s, increases to 0.8 mA at 8 s and finally steadys out at 1.8 mA
at 20 s. The variation in emission current is the result of the pressure inside the source
decreasing to its steady-state value after the gas-burst-ignition.

The emission current from the breadboard source was measured for its various
operating points. It was:

. 1.8 mA at setpoint 2 (nominal operating point)

. 0.84 mA at setpoint 1

. 0.80 mA at setpoint 0

. 0.45 mA at setpoint 2 with the discharge supply OFF
. 2.05 mA at set point 3.
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For the plasma generator, ion emission as a function of discharge current for a keeper
current of 250 mA is shown in Figure 7-15. Some optimization of the plasma source was
performed between the breadboard data and the 1 Oct 85 data shown in Figure 7-15. This
optimization was performed to improve the ignition and operating characteristics of the
plasma generator and as a result of data collected during the breadboard demonstration. The

optimization consisted of:

. Incorporating a ceramic insuiator between the cathode and keeper and
optimizing the gas-burst volume; these changes increase the interelectrode gas
pressure to reliably produce the Paschen breakdown that initiates cathode
ignition.

. Developing a new cathode-insert fabrication technique in which 0.051-mm-
thick foil is used to space and thermally isolate different layers of the rolled-foil
insert.

. Tapering the downstream edge of the insert, thereby exposing a greater number
of layers of foil to the cathode plasma.

. Improving the discharge-chamber gas feed by providing several gas-diversion
holes in the keeper (i.e., post-cathede gas diversion), resulting in increased ion
emission from the source.

. Installing a new current-limiting circuit in the keeper power supply to reduce
the peak current delivered to the source during ignition, because we have found
that ignition currents greater than a few amperes lead to degraded source
performance.

A prototype sourcc was operated for a total of 730 hours and 913 gas-burst ignitions as
part of a lifetest. The lifetest was terminated after the source operation became unreliable.
Upon disassembly of the source, we found that the cathode tube had become brittle and
fractured. We utilized SEM and EDAX iechniques to carefully examine the cathode, which
consisted of a tantalum tube with a tungsten tip and the rolled-foil insert. The elements found
within the tube and in the neighborhood of the fracture included aluminum, barium, copper,
tantalum, rhenium, and iron. The presence of each element can be explained by the
manufacturing techniques used to fabricate the cathode, except for the iron which may have
been residual contamination from the SEM vacuum vessel. We concluded that foreign
materials were not introduced into the cathode, and that the fragile condition of the tube was
probably a result of a reaction between the emissive mix on the rolled-foil insert and the
tantalum cathode tube.
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Figure 7-15. Plasma generator ion-emission current as a function of discharge current.

We also found that the 0.010-in.-diameter cathode orfice in the tungsten tip had
become partially occluded. However, since we found only aluminum, copper, and tantalum
within the orfice and did not measure traces of rhenium or platinum, the occluding material
was probably not a remnant of the rolled-foil insert.

The brittle state of the cathode tube indicated that the design of the plasma source
should incorporate a cathode tube assembly which is fabricated from an alternative material
which is less subject to becoming brittle than tantalum. Therfore the design was changed to
50/50 molybdenum-rhenium; a material that has shown a greater resistance to becoming brittle
in testing by Hughes under a NASA-LeRC ion propulsion contract (NAS 3-22474).
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7.5 CYCLIC LIFE TEST A

A cyclic lifetest was performed to demonstrate the required source performance of over
1200 hours of operation and 1000 gas-burst ignitions. The test utilized the plasma generator which
was part of the FMDS breadboard demonstration, a new cathode employing moly-rhenium, flight-
type power supplies, and a flight regulator (set to 69 kPa) in the feed system. Prior to performing
the lifetest, we corrected the less-than-ideal gas-burst ignition properties of the source observed
during the breadboard demonstration by optimizing the keeper and discharge power supply load
lines.

The test had demonstrated 1,562 hours of operation and 1,582 cold gas-burst starts when
we voluntarily terminated the test to permit detailed inspection of the plasma source. The cathode
and cathode insert were both in excellent condition, indicating that we had not yet reached the end
of lifetime for these critical plasma source components.

The significant aspects of this lifetest relative to previous tests were:

(1)  Use of a90% xenon and 10% hydrogen gas mixture (as opposed to pure xenon) to
ameliorate what we believe to be water vapor deconditioning of the cathode insert.
(2)  The cathode tube was made of a molybdenum-rhenium alloy, chosen for its
resistance to chemical attack from the emissive mix and embrittlement by hydrogen.
(3)  The peak keeper current from the 1-kV ignitor supply was reduced from 1 A to
0.4 A.
(4)  Aninductor was added to the output of the keeper supply to accommodate short
duration instantaneous voltage transients required by the plasma generator during
the first 20 s after ignition.

As a result of this life test, several observations can be made.

(1)  The 90/10 xenon/hydrogen gas mixture improved the gas-burst-ignition
characteristics while not affecting other operating parameters.

(2) A minimum ON time of 1 hour improved the gas-burst-ignition characteristics of
subsequent cycles.

(3)  Periodic reconditioning of the plasma generator was necessary for reliable ignitions.
We recommend after every 100 ignitions since the vast majority of ignition faults
during this lifetest occured after 100 cycles since the last reconditioning.
Reconditioning consisted of applying 20-W of tip heat for 1 hour and then
operating the plasma generator for 1 hour without tip heat.
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{4)  Steady-state performance (after being ON for approximately 120 s) was very
reliable.

Throughout the course of the lifetest, we utilized a variety of computer-controlled operating
modes. The ON times ranged from 2 minutes to 2 hours, and the OFF times from 1 to 59 minutes.
The computer system was capable of performing an immediate restart of the plasma generator if it
did not start successfully. After three successive failures, the computer shut the test down and
waited for operator-controlled reconditioning to be performed. Reconditioning, which refreshes
the layer of work-function-reducing emissive mix on the cathode insert surfaces, returned the
ignition characteristics to a satisfactory condition, and was performed several times during the
lifetest.

The ion-emission characteristics of the prototype plasma source are shown in Figure 7-16
for various keeper and discharge current setpoints. The ion-emission current is relatively
insensitive to keeper current and is mainly a function of discharge current over the range of
parameters tested. The keeper and discharge voltages as a function of expellant flowrate are shown
in Figure 7-17 (keeper current = 255 mA, discharge current = 202 mA). The voltagés start to rise
rapidly below 0.5 sccm which is the nominal operating point and a good compromise between
input power and expellant consumption.

The keeper current and voltage (on a fast time scale) are shown in Figure 7-18 during gas-
burst ignition. On this time scale, both are well behaved and quickly settle out. However, Figure
7-19 shows that the plasma generator is quite noisy and its operating parameters varying during the
first two minutes of operation. This is believed to be associated with the cathode coming up to
operating temperature and the flowrate decreasing to 0.5 sccm (after the gas burst for ignition).

FMDS is ultimately intended for use on operational spacecraft where hydrogen in the
expellant will not be a problem. However, the use of hydrogen in the expellant could be a problem
if FMDS is used on some scientific spacecraft. The plasma generator will expel protons and
protons are the dominant natural species in space. If hydrogen were a problem, then deuterium
might be acceptable, depending on the scientific measurements being made. Deuterium has the
same ameliorating effects on the plasma generator as hydrogen.

Hydrogen is also always a concern from the safety standpoint. The FMDS expellant tank
will contain 10 standard liters of H, and explosive mixtures in air or oxygen require H,
concentrations greater than 4%. Therefore if all 10 standard liters were immediately dumped into a
volume greater than 250 liters (S ft3 or a cube 2.1 ft on a side), the mixture would not be explosive.
For this reason, we believe the quantity of hydrogen carried by FMDS is not a safety hazard.
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7.6 FLIGHT PLASMA SOURCE TEST RESULTS

The first flight plasma source to be tested was S/N 903. S/N 903 is not planned to ve
flown, but is identical to S/N 901 and S/N 902 which are the flight sources. It was tested to
verify the flight design which is structurally modified from the breadboard source in a manner
which was not expected to significantly effect operating characteristics. However, the first
operation of S/N 903 was very erratic and unacceptable as shown in the stripchart recording of
Figure 7-20. The keeper voltage continuously drifted, jumped around, and never stabilized.
In addition, the keeper and discharge voltages were both higher than expected. This type of
operation was thought to be indicative of contamination of the cathode and its insert; however,
a problem with the design was still a possibility at that time.

We were in the process of replacing the cathode insert with one we knew was good
(from the breadboard source), when we discovered that some of the components in the source
were very discolored and abnormal looking. We had these parts analyzed and concluded that
an air leak in the feed system, which was later discovered, had contaminated the source, as
evidenced by the copper and rhenium oxides present. We also concluded that a dark material
on the heater-lead outer conductor and the mounting collar was stainless steel that was vapor
deposited on those components during fabrication. When the heater lead was brazed into the
mounting collar, the brazing fixture had stainless steel screws, which disappeared during the
brazing operation. These parts were grit blasted to remove the stainless steel; however, the
presence of some stainless steel in these areas is not considered to be a problem.

All parts of the source were cleaned, a new cathode insert was installed, and the source
was reassembled. As an additional guard against contamination, we cleaned the vacuum
chamber in which the source was tested. Figure 7-21 shows a stripchart recording of the
keeper voltage and emission current during subsequent testing. It is very stable and well-
behaved (after the normal ignition transients), and the keeper and discharge voltage levels are
very acceptable.

Ion emission current (Ig) as a function of keeper current (Ix) and discharge current (Ip)

is shown in Figure 7-22. The two operating points depicted in this figure and Figures 7-23 and
7-24 are detailed in Table 7-2. We can see from Figure 7-22 that higher Ig (than the nominal
of approximately 1 mA at Ix = 250 mA and Ip = 200 mA) can be obtained by going to a
lower keeper current and a slightly higher discharge current (Ig = 3.5 mA at Ig = 50 mA and
Ip = 250 mA). Figure 7-23 shows total input power to the source as a function of Ix and Ip.
It is interesting to note that the higher Ig region from Figure 7-22 actually requires less power
than the nominal point. Specific ion emission current in PA/W is plotted against Ix and Ip in
Figure 7-24. This figure shows that the source performance is definitely much better at lower
keeper currents; however, flight source S/N 901 had a low amplitude oscillation when

€
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Table 7-2. Operating Points Illustrated in Figures 7-22, 7-23, and 7-24.

T9234-16
Point: | J A
Keeper: 114V, 50 mA 139V, 250 mA
Discharge: 234 V,250 mA 23.7V,200 mA
Ton emission: 349 mA 0967 mA
Gas flowrate: 0.46 sccm 0.46 sccm
Total power: 642 W 822w
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operated with the flight power supplies at Ix = 50 mA and Ip = 250 mA. It is also necessary
to start the source at the nominal operating point and then switch to the lower Ik point after
the ignition t-:ansient is complete (1 to 2 minutes).

Testing of the delivered flight plasma source (S/N 901) was accomplished without any
problems. Its initial operation was very stable and well-behaved. The initial discharge
voltage of =28 V was quite high but dropped to an acceptable level of =17 V within the first
few hours of operation. The ion-emission characteristics of this plasma source are shown in
Figure 7-25 for various keeper and discharge current setpoints. The high emission-current
output for low keeper current (50 mA) is readily apparent in this figure. The plasma source
has a nominal operating point (SP 10) of:

V=148V Ix =258 mA Pk =382 W
Vp=185V Ip=177TmA Pp=327TW

Therefore the plasma source nominally consumes and dissapates =7.1 W. This power is
dissipated by conduction through the plasma source mounting base and by radiation from its
surfaces.

A photograph of the flight source is shown in Figure 7-26. It has a mounting base that
is 9.6 cm (3.78 in.) square with rounded corners, a main body diameter of 8.13 cm (3.25 in.),
and is 14.0 cm (5.5 in.) high. It has a measured mass of 1.72 kg (3.80 Ib).

7.7 FLIGHT SOURCE ELECTRONICS AND FEED SYSTEM TEST RESULTS

The flight source electronics were bench tested before being integrated with the plasma
source and controller. This testing revealed a major problem in the keeper power supply; the
components on the primary side of the transformer in the high-voltage (1000 V) section were
being overstressed by voltage. This overstress resulted when the design was changed from an
input bus of 28+4 Vdc to a 29- to 43-Vdc bus. Higher voltage-rated components were not
readily available; therefore, the design was changed from being a separate flyback inverter for
the HV section to the Hughes' patented circuit shown in Figure 7-11 and discussed in Section
7.3.1.

The output characteristics of the heater, discharge, and keeper supplies are shown in
Figures 7-27 through 7-29 respectively. The efficiencies of these supplies are also shown on
the figures for the various operating points measured and are all nominally 60%. The plasma
source power supplies are housed in an electronics box along with the input filter,
housekeeping inverter, and bipolar log electrometer. This box (without covers) is shown in
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Figure 7-26. Photograph of flight plasma source S/N 901.
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Figure 7-30. Itis 17.78-cm L x 15.24-cm D x 13.97-cm H (7.0 x 6.0 x 5.5 in.) and has a
mass of 3.461 kg (7.63 1b).

The expellant tank was filled by Cryogenic Rare Gas Co. with 495 g (90 standard
liters) of xenon and 10 standard liters of hydrogen. The expellant tank has a volume of 2.048
liters, resulting in an expected tank pressure of 4.02 MPa (583 psia) at 21°C. The tank
pressure measured using the high pressure transducer (and its manufacturers calibration data)
was 3.66 MPa (530 psia). The expected tank pressure due to the partial pressure of xenon was
calculated using the correction values for the compressability of xenon that were presented in
a paper by Juza and Sifner and is 3.52 MPa (510 psia) at 21°C. The partial pressure of the
hydrogen was calculated by treating it as an ideal gas and was 0.50 MPa (73 psia) at 21°C.
These pressures lead to a calculated temperature of -23°C where the xenon will start to liquify
in the tank. This temperature was also obtained from the data in the paper by Jusa and Sifner.

The gas in the tank was certified by Cryogenic Rare Gas Co. to be 10% hydrogen and
90% xenon on a mol/mol basis with the foliowing impurity concentrations:

Krypton <25 ppm
Nitrogen <5 ppm
Oxygen <2 ppm
Methane <1 ppm
Carbon Dioxide <1 ppm
Water <1 ppm.

We also measured the flow rate provided by the flight pressure regulator and the flight flow
impedance. With 1.1 MPa (150 psig) on the upstream side of the pressure regulator and the
downstream side of the flow impedance at vacuum, the measured flow rate was 0.655 sccm.

The expellant (unk and the pressure regulator can be seen in Figrize 2-2. The feed
system has a mass of 4.067 kg (8.97 1b) dry and contains an additional 0.496 kg (1.10 1b) of
expellant when fully loaded.

7.8 CONTAMINATION MEASUREMENTS

The possibility of contaminants emanating from a plasma generator is always a concern
to spacecraft designers, especially where optical and thermal control surfaces are involved.
Therefore, during the lifetest of the breadboard plasma generator, we installed three glass
“witness" slides within the vacuum chamber to measure the deposition of any contaminating
substances that might emarnate from the plasma generator.
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Figure 7-30. Plasma source electronics box without its cover.

162



The slides were placed in the positions shown in Figure 7-31. Slide #3 was directly
below the exit aperature of the plasma generator and slide #4 was approximately 17 cm further
downstream. Both slides were mounted on a perforated steel mesh vacuum-chamber liner
(diameter = 23.4 cm). Slides #1 and #2 were control slides, with #2 being placed within the
vacuum chamber but upstream of the plasma generator and isolated from the emitted plasma
by a perforated mesh. Slide #1 was never placed in the vacuum chamber.

After the lifetest, we found that slide #3 had become coated with a brownish material
while slides #2 and #4 still appeared clear. Light transmission analysis of all four slides
indicated that slides #1, #2, and #4 all had similar characteristics, while slide #3 showed
transmission loss compared to the other three. This transmission loss as a function of
wavelength is shown in Figure 7-32. We used electron spectroscopy for chemical analysis
(ESCA) to measure the relative amounts of any surface-deposited elements on slides #1, #3,
and #4. No contaminants were identified on slides #1 and #4 while slide #3 was found to have
carbon and sodium on it. We believe that this contamination is due to vacuum-pump oil that
backstreamed ontc the slide and subsequently decomposed under bombardment by plasma ions
and electrons.

Contaminants that might be emitted from the plasma generator are barium, strontium
calcium, platinum, rhenium, molybdenum, iron, samarium, colbalt, stainless-steel, tantalum,
and tungsten. None of these were found on the witness slides.

We also used optical spectroscopy to determine if there were sputtered-metal contaminants
present in the efflux of the FMDS plasma source during operation. These contaminants, if
present, would pose a potential deposition hazard to nearby sensitive spacecraft surfaces.
While we do not expect sputtering within the FMDS plasma source (because the voltages
present in the source are generally below the sputtering threshold for the materials that
compose the discharge chamber), we have had only limited experimental confirmation of this
expectation. In the present work, we found no contaminant spectra in the FMDS plasma
source optical emissions. This finding is in agreement with the above resuits for the glass
"witness" slides, giving us a high level of confidence that the FMDS plasma source efflux is
free of contaminants.

Figure 7-33 shows the simple apparatus that we used for the measurements. Light
from the FMDS plasma source Penning-discharge plasma is imaged onto the slit of a 0.25-m
Jarrell-Ash monochromator, which is equipped with a stepping-motor grating drive. As the
grating moves, spectral lines fall on the exit slit where they are detected by an R212A
photomuitiplier tube. The photomultiplier output is recorded on a strip-chart recorder. We
calibrated the system by placing commercial neon and krypton calibration lamps at the
location of the plasma source and recording their spectra. By using these known spectra as
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guides, we could determine the wavelengths of lines emitted by the FMDS plasma source with
a high degree of accuracy.

To determine if contaminants were present, we compared the observed spectrum with
published atomic and ionic persistent-line spectra for xenon and hydrogen and for the
candidate contaminantes of iron, tungsten, molybdenum, tantalum, platinum, and rhenium.
Generally, if a given species is present in a Penning discharge, it will be represented by
multiple spectral lines, because electrons in the discharge are sufficiently energetic to excite a
large number of atomic energy levels. In some cases individual spectral lines of the candidate
contaminants may coincide with those of xenon or hydrogen lines (within the resolution of our
instrument), making unambiguous identification of those particular lines impossible. For
tentative species identification, we required the presence of at least one unambiguous spectral
line; positive identification required multiple unambiguous lines. Using this criterion, we
found no evidence (tentative or otherwise) of any of the candidate contaminants. Each of the
candidate contaminants has strong persistent lines which fall into regions of the spectra that
would make them clearly distinguishable from xenon and hydrogen lines; none of these lines
were detected.

The occurrence of a null result, as obtained above, always brings with it the question
of whether the af paratus was sufficiently sensitive. While more sensitive measuring
techniques (photon counting, laser fluorescence, etc.) certainly exist, we have previously used
the same spectroscopic apparatus to detect contaminants in the emissions spectra of ion-
thruster Penning discharges which run at slightly higher discharge voltages. In these
measurements, we easily detected iron and molydenum spectral lines when voltages within the
ion thruster were above the sputtering threshold. These previous results lend confidence in our
ability to detect contaminant atoms at levels which (for the ion-thruster application) have been
judged not hazardous to a spacecraft.

Another possible concern to a spacecraft is the condensation of xenon expella on
cryo-temperature surfaces. Neutral xenon gas released from the plasma generator will
condense and freeze (xenon has a 161 K freezing point) on cold (100 K) optical surfaces,
potentially forming a thin xenon-ice coating that could degrade the optical properties of the
cold optical elements. We present very simple calculations below that indicate no buildup of
condensing xenon will occur at the 100 K optical-surface temperature and that only a small
fraction of a monolayer of xenon surface coverage can be expected.

The rate of buildup of xenon on a cold surface can be computed by evaluating the
xenon arrival rate (as a result of xenon diffusion from the plasma generator) and loss rate (as a
result of xenon evaporation at 100 K from the cold optical surface).
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The flux of neutral xenon arriving on an exposed surface is

farriving = No<Vo>/4,

where n, = 1011/m3 is the assumed neutral-xenon density, and <v,> = 194 m/s is the mean
xenon-atom velocity (assuming a 300 K temperature). These approximate numbers give an
arriving flux of about

The loss flux can be estimated by assuming that there is a thin xenon-vapor layer above
the cold surface that is in equilibrium with the adsorbed xenon immediately below it. This
layer will have a pressure equal to the vapor pressure of xenon at 100 K (i.e., 100 Pa). This
pressure corresponds to a gas density near the surface of

ns = P/kTs = 1023/m3,
giving a flux of leaving xenon atoms of

These simple calculations predict that if there were a surface la, :r of adsorbed xenon,
it would desorb approximately 109 times faster than it could be replenished from ambicnt
xenon. This calculation confirms what intuition suggests: unless the pressure of xenon gas
that reaches cryogenic surfaces exceeds the 100-Pa vapor pressure of xenon at 100 K, no
frozen-xenon buildup will occur. Xenon pressures this high exist only inside the plasma
generator itself, and only for a few seconds during gas-burst ignition.

While the foregoing calculations show that no macroscopic xenon-ice buildup can be
expected, a small fraction of a monolayer of xenon will form on exposed surfaces, because
arriving atoms spend a finite time on the surface before they are evaporated off. The
equilibrium surface coverage increases with incident  on flux, decreases with temperature,
and varies somewhat with the composition of the opu.al surface. In a typical result,5
investigators found 0.08 monolayers of xenon on a palladium substrate at 100 K; however,
their incident xenon-atom flux was furriving = 3x1017/m?2s, which is greater than our expected
flux by a factor of =40. Very sophisticated experiments are required to detect even one
monolayer; therfore, the buildup of xenon from ‘..e plasma generator should not effect the
operation of any optical surfaces or sensors.
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7.9 MAGNETIC FIELD MEASRUEMENTS

One of the specifications for the FMDS is that magnetic fields should be less than 100
nT at 1 iz in any direction from the unit. Since the plasma generator contains permanent
magnets, this specification is of primary conzem. Measurements made on the unshielded
flight magnetic field structure (using flight hardware) gave readings of 150 to 200 nT at 1
meter. The magnetic field structure is housed in a 3.25-inch-diameter by 5.5-inch-high
cylinder that is closed on each end (except for the 0.5-inch-diameter exit aperature on the
downstream end). Various methods of magnetically shielding this cylinder using Netic and/or
Conetic materials were investigated and rejected because of fabrication problems. Fabricating
the cylinder and downstream end plate from soft steel works as well as the special materials
and is easy to fabricate. The final enclosure design is shown in Figure 7-2 and was expected
to reduce the magnetic field to less than SO nT at 1 meter. Measurements made by Southwest
Research Institute were nominally 200 nT at 0.5 m. Assuming that we are dealing with a
dipole magnetic field, its field strength will fall off as 1/r3, and therefore will be nominally 25
nT at 1 m.
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SECTION 8
SYSTEM DESIGN

The FMDS is designed as a self-contained system. This approach minimizes the
interfaces with the satellite and makes the FMDS more attractive as a "housekeeping” function
that performs the task of keeping the satellite in a neutral charge state. The command-and-
telemetry interfaces are accomadated through the controller and the power interface is
accommodated through the Plasma-Source electronics box. This enables single types of
command, telemetry, and power interfaces with the satellite. Any differences in command
and/or telemetry format required by the sensors or the Plasma Source are provided by the
Controller and not the satellite. All of the components of the FMDS are mounted on a flat
plate as discussed in Section 2.1. This flat plate is the mechanical and thermal interface with
the satellite.

The SPACECLAMP plasma source for the FMDS turns ON in 1 s or less once the
power supplies have been turned ON and the burst valve opened; therefore, the response time
of the FMDS (the time-span from the satellite reaching the threshold level selected as the
critical charging level until low-energy plasma is emitted) is mainly determined by the
instrument response times, the time required for the controller to process the appropriate
algorithms, and the time required for the controller to operate valves and turn the power
supplies ON.

The controller operates on a 4-s cycle and closes the plasma source relay during the
cycle following the one in which charging is detected, and the high pressure valve is opened
during the next cycle. The bypass valve is closed and the keeper supply turned ON during the
next cycle, followed by opening of the burst valve and emission from the plasma source
during the subsequent cycle. Therefore, it takes approximately 16 s from the time that an
algorithm determines that charging is present until the plasma source is turned ON. The ESA
has sweep times of 4, 8, 16, and 32 s, and the algorithms associated with it require 5, 5, 3 and
1 sweeps respectively to detect charging. The SPM responds almost immediately and its
algorithm requires 4 cycles to detect a hazard. The TPM also responds immediately and one
detected arc sets the charging flag. The total FMDS response time from a hazard being
present, being detected by the various FMDS instruments, and plasma source turn-ON is listed
in Table 8-1. The desired response time is 30 s or less. It is obvious from Table 8-1 that the
ES.A does not meet this requirement for any of its sweep rates. Nothing can be done about
th: 32-s swe=p since at least one sweep of the instrument is required to obtain data. The 16-s
sweep response could be lowered to 48 s or 32 = by lowering the required nuymber of sweeps
from 3 to 2 or 1 respectively. The response for the 8-s cweep could be lowered to 40 s or 32 s
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by lowering the required number of sweeps from § to 3 or 2 respectively. Similarly the 4-s
sweep response can be lowered to 32 s or 28 s by reducing the required number of sweeps
from 5 to 4 or 3. The required number of sweeps can casily be modified by changing the
appropriate value of k or j in Figures 6-16 and 6-17 with EEPROM write commands.

Table 8-1. Response Times of the FMDS for the
Various Chargirg Sensors.

CHARGING SENSOR FMDS RESPONSE TIME, s
ESA (4-s SWEEP) 36
ESA (8-s SWEEP) 56
ESA (16-s SWEEP) 64
ESA (32-s SWEEP) 48
SPM 28
TPM 16

8.1 ELECTRICAL DESIGN

Since the exact vehicle and/or satellite on which the FMDS will be flown is not known,
the exact power, command, and telemetry interfaces are not known. Therefore, we have
designed for the case we consider to be standard and resonable interfaces.

The primary power return, the command signals, and the telemetry signals to the
FMDS are all isolated from the chassis and from each other by at least 1 megohm. The one
telemetry data line from the FMDS is referenced to chassis inside the FMDS under the
assumprtion that isolation for this line will be provided on the satellite end. The satellite
structure is not used as an intentional current carrying conductor. The ground-return-isolation
scheme is shown in Figure 8-1.

The design of the housekeeping inverter isolation and regulation is shown in Figure
8-2. This inverter provides transformer isolation between the spacecraft power bus and the
FMDS electronics and reguiated housekeeping power (5 V, £12 V, 28 V) to the sensors and
plasma source electronics. Primary power for the plasma source power supplies is taken
directly from the spacecraft bus with isolation provided by the individual inverter output
transformers. Relays are provided to turn the power to the sensors and the plasma source
ON/OFF via commands from the controller. Powci (nominally 28 Vdc) to operate the valves
and relays is obtained by placing a 10-V zener diode in series with the input bus to provide 19-
to 33-Vdc power. This approach, although very lossy during the 125-ms pulse to a valve or
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relay, actually dissipates very little average power, since pulses occur on an average of less
than one per hour.

The inverter consists of three basic sections as shown in the block diagram of
Figure 8-2: (1) A pulse-width-modulated (PWM) step-down preregulator which provides a
constant 20-V input to the inverter section; (2) a current-fed, square-wave-inverter section
which chops the 20-V power at a 50-kHz rate and provides power to (3) multiple secondary
output windings.

The current-fed, push-pull, square-wave converter provides all the characteristics
required of this isolation regulator:

. Transformer isolation between input power aad output power
. Multiple output capability

. Good cross regulation between outputs

. Minimum complexity.

In addition, this configuration minimizes the high-power stresses imposed on the
switching elements during switching intervals by placing a filter choke in the input power line
where it can limit the current through the transformer and the switching elements. It also
prevents damage due to unbalanced dc currents and effectively turns the converter into a
current source which aids in maintaining stable operation over a wide operating range.
Minimum complexity is achieved by using one choke in the primary which current feeds all
outputs in parallel. Since each secondary winding drives its load directly (without a choke),
cross coupling between outputs is very tight, resulting in excellent cross regulation. To
achieve good cross regulation, however, it is necessary to maintain a continuous, low-
impedance across the primary winding which dictates driving the primary winding at
maximum duty cycle (50% each side) at all times. This requirement precludes using PWM
for output regulation. Instead, the step-down converter must be used to regulate the voltage to
the current-fed converter, which in turn regulates all secondaries in parallel.

A schematic of the housekeeping inverter is shown in Figure 8-3. U1 is the pulse-
width-modulator integrated circuit that controls the step-down converter to regulate the 5 Vdc
for the controller. All the other housekeeping voltages track this regulated voltage. Q4 is the
switching MOSFET that alternately connects .1 to common or to the input bus (via CR1)
thereby controlling the average current flowing in L1. L1 is then the current source that feeds
the output inverter which is comprised of Q2, Q3, and T3. Q2 and Q3 are alternately
switched ON/OFF by flip-fiop U2 and T1 which are syncronized to Ul. Startup power is
applied to U1 and U2 via Q! and then the circuit is bootstraped via R19 and CR3 to provide
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higher efficiency. The secondary windings of T3 are rectified and then capacitively filtered tc
provide the appropriate dc voitages for ope-ating the various FMDS subsystems. Most of the
dc outputs are controlled by relays to turn the subsystems ON/OFF. These relay contacts have
' a small impedance in series with them to limit the transient current when they are closed into
the capacitive loads.

VR14 is the zener diode which lowers the input voltage for driving the valves and
relays. U6 through U21 are optical isolators which provide ground isolation for the valve and
relay drivers. U23, U22, and Q11 comprise a time delay circuit which opens all relays and
closes all valves if it is not reset at least once every 16 s. ) This is par: of the controller
watchdog timer and is intended to place the FMDS in a safe mode if execution of the
controller software has gotten lost, and to disconnect an instrument that is shorting the output
of the housekeeping inverter and thereby preventing any of the FMDS subsystems (including
the controller) from operating.

The signal from the input current shunt (R103) is amplified and chopped by AR1,
CR42, and Q44. The signal is siepped up in voltage and isolated by T4, and then rectified
and filtered to provide an analog telemetry signal of input bus current. The input bus voltage
is measured by limiting th2 voltage on the TS windings to the input bus voltage with CR47.
The output of TS5 is then rectified and filtered to provide the telemetry signal.

To minimize high frequency EMI radiation from power-distribution lines, all
rectification and filtering is performed within the housekeeping subsystem. Only dc power is
distributed to the subsystems. Ground returns intemnal to the FMDS are connected to its case
in a manner consistent with minimizing EMI and avoiding internal ground loops. The plasma
source must be referenced to the satellite frame (through the bipolar-log electrometer to the
FMDS mouuting plate) for proper operation.

An input filter is provided for the spacecraft bus and is d=signed to meet the
requirements of MIL-STD-461B and MIL-STD-1541. The Fil..., shown in Figure 8-4, is a
two stage LC filter and feeds all of the FMDS inverters. Its calculated attenuation
characteristics are shown in Figure 8-5.

The housekeeping inverter and the input filter are housed in the plasma source
electronics box discussed in Section 7.7.

8.2 COMMANDS AND TELEMETRY

All commands and telemetry to and from the FMDS are in the form of serial digital
signals. Ground isolation of digital signals is easily performed with optical isolators while
ground isolation of analog signals is a much more complicated process. The use of serial
digital signals (as opposed to pa:allel digital signals) and multiplexing the commands or
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telemetry words sequentially over the same wires significantly simplifies the command and
telemetry interfaces with the spacecraft. The command interface requires three lines (an
enable, a clock, and a data line) and the telemetry interface requires four lines (an enable, a
clock, a data, and a frame-sync line).

The optical isolation and driver circuits are shown in Figure 6-6. The telemetry data
line requires optical isolation on the spacecraft end, while the other six iines have their optical
isolation on the FMDS end. Futher details of the command and telemetry interface were
presented in Section 6.1 and a listing of the commands and telemetry words is in Appendix A.

8.3 MECHANICAL DESIGN

The mechanical design of the FMDS was discussed in Section 2.1 and the FMDS is
shown in Figure 2-2. The overall dimensions, masses, and power consumption are also
detailed in Section 2.1. The thermal design is discussed in Section 9.
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SECTION 9
SYSTEM THERMAL ANALYSIS

The following sections summarize the results of the FMDS thernal analysis study from
its inception in 1983 until its completion in September 1986. Figures and tables are included
which show predicted system temperatures under various conditions. :

In addition to the development of an FMDS thermal model, certain key modules were
analyzed. Steady state analyses of the TPM Threshold Detector, Master Microprocessor, and
Plasma Generator Electronics (Shelf 2) Assemblies were performed. The purpose of these
module analyses was to predict component operating temperatures and compare the results with
the maximum acceptable component derated temperatures per Hughes S&CG document PA201.
The CINDA thermal models used to calculate these temperatures were delivered as a separate
report under the contract.

9.1 ANALYSIS INPUTS
This section coutains the physical and thermal configurations assumed for the thermal
analyses.

9.1.1 Physical Design

The FMDS system components mounted on the honeycomb mounting plate are shown in
Figure 9-1. With the exception of the plasma generator, the system is covered with an aluminum
enclosure. The enclosure sides are blanketed with Multi Layer Insulation (MLI) while the top is
covered with quartz radiator and/or MLI. The normalized radiator area, Ag, is a key parameter in
the presentation of the results to follow. The primary system components in Figure 9-1 are:

Plasma Generator

Plasma Generator Electronics
Electrostatic Analyzer (ESA)
Transient Pulse Monitor (TPM)
Surface Potential Monitors (SPMs)
Controller.

The mounting position of the FMDS must be on an external surface of the satellite so that

the ESA, TPM, SPMs, and plasma generator will have a view of the natural space environment.
One such mounting position is shown in Figure 9-2.
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The TPM Threshold Detector auid Master Microprocessor Assemblies consist of a
Multiwire board? mounted at the top and bottom to right angle brackets. A cross section of a
typical Multiwire board is shown in Figure 9-3. A polyimide core 0.030 in. thick is coated on
both sides with 2 ounce copper layers which serve as power and ground planes. A typical ground
plane with cutouts for component and via holes is shown in Figure 9-4. Lach layer of copper is
covered with 0.006 in. of prepreg (adhesive layer) and glass epoxy which forms the outer surface
of the board. A Multiwire board provides the conductive interconnections between electrical
components through the use of insulated #34 AWG magnet wire embedded in the surface layer
of the board.

The components in the Source Electronics Assembly are mounted on a 0.050 in. thick
aluminuin mounting plate which is 5.9 by 5.4 in.

9.1.2 Thermal Configuration

Figure 9-5 shows a simplified thermal model of the FMDS with boundary conditions at
the satellite/FMDS interface as well a5 the space/FMDS and satellite-structure/FMDS interfaces
which interact radiatively with the system. The top of the aluminum enclosure is tightly coupled
to space when it is entirely covered with radiator.

The relationship between system-level and board-level analysis is shown schematically in
Figure 9-6. The electronics boxes which are conductively connected to themselves, the top of the
enclosure, and the honeycomb mounting plate are also radiatively connected to their interior
surroundings. The latter point is true for all system components within the enclosure.

The Master Microprocessor and TPM Threshold Detector Assemblies are shown in
Figures 9-7 and 9-8 rcspcctively.‘Mﬁltiwire boards are used for both assemblies and details of the
differsnt board layers are shown below. These boards are mounted by front-surface right-angle
aluminum brackets 0.050 in. thick. It is assumed that all of the component generated heat must
flow through the board and exit at one of the right-angle brackets. The two copper layers of the
board provide most of the lateral heat path.

BCARD LAYER MATERIAL  THICKNESS(inches)

1 epoxy 0.006
2 prepreg 0.006
3 copper 0.0028
4 polyimide 0.030
5 copper 0.0028
6 prepreg 0.006
7 epoxy 0006
TOTAL 0.0596
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The Plasma Generator Electronics (Shelf 2) Assembly (shown in Figure 9-9) is
constructed around a 0.050 in. thick aluminum plate with the heat dissipating components
bonded and/or stud-mounted to the plate. Interconnections between electrical components are
hard wired with insulated via holes providing passage through the aluminum plate. Two
components are mounted on transformer T1-CH and for these the mounting temperature is taken
to be the transformer case temperature.

9.2 OPERATING CONDITIONS

A power dissipation map of the FMDS system is shown in Figure 9-10. Some minor
changes to this map have occurred, however, this map is the baseline for the thermal analysis.
The system has two basic modes of operation that are considered. The first, the "operating"
mode, corresponds to operation of the plasma source and has the maximum dissipation (25.5 W).
The second mode is the "monitoring" mode during which time the plasma source and its
electronics are off and therefore not dissipating any power. The system dissipatioh for this mode
is 10.5 W.

Two thermal cases are considered for these operating modes. For the first, the hot case,
operating and environmental conditions are chosen to result in the highest system temperatures.
The system is considered to be in the "operating” mode with a 43°C mounting surface
ternperature, and under a solar load at the End-of-Life (EOL). For the second case, the cold case,
the mounting surface temperature is -13°C, there is no solar load, and the system is in the
"monitoring" mode.

The TPM Threshold Detector, the Plasma Generator Electronics (Shelf 2), and the Master
Microprocessor Assemblies are assumed to dissipate a worst case of 4.8, 11.4, and 0.3 W
respectively. In actual practice, they will dissipate less power than this. The boundary
temperatures for the TPM Threshold Detector Assembly are 54°C at the bottom bracket and
50°C at the top bracket. The boundry temperatures for the Plasma Generator Electronics and
Master Microproccesor Assemblies are 57°C at the bottom bracket and 61°C at the top bracket.
These boundary temperatures were calculated using the system thermal model for the hot case
and are both (top and bottom) within 4°C of each other. Junction and case temperatures for the
parts are compared to component derated temperatures per Hughes S&CG document number
PA201.

191




169809

c ?
D

R42
D

R40 D

. am e e G W m e o w e ew W ® Ememw e e e

Ci14

W am Nt e e an o e G A VR W e B e o w e e e e e o

CH

thyy!

Vo v @ = AW S e e . — —— Y e e % e w o

C9B | C9C | coD
CH CH | CH

L e T T

R39

e
@—o—*@é—’i;

r

Figure 9-9. Plasma generator electronics (shelf 2) assembly component layout.

192




16880-10R1
A PLASMA GENERATOR ELECTRONICS (5.0 W)

PLASMA GENERATOR
{10.0w)

SPM (0.4 W)
HONEYCOMB

MOUNTING sy ESA (1.25W)
PLATE S
:—‘:T
5.5
:} 1'!
N2 4
2
S

PM (0.4 W)

ANTENNA
(0.5wW)
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9.3 ASSUMPTIONS
The following assumptions were made in the system analysis:

1) Off normal solar incidence (23.4°)
2) Unobstructed view of space

3) No concentration of solar load

4) Internal subassemblies painted black

5) Surface properties:
Emissivi Al .
Radiator 0.8 0.1(BOL)/0.2(EOL)
MLI blanket 0.65 0.1(BOL)
6) Aluminum wall thickness:

Enclosure - 0.050 in.
Electronics box - 0.050 in.

The following assumptions were made in the board analyses:

1) There is negligible thermal contact resistance between the board and its mounting
bracket.

2) The copper planes extend throughout the board (except where cutouts occur) and
under the area in contact with the mounting brackets - the latter point should not
be over looked with regard to its impact on board temperature deltas.

3) All component maximum allowable temperatures are taken to be 100°C for the
Master Microprocessor Assembly.

4) The junction-to-case thermal resistance (050 for U1, U3-U11, and U19-U23 of
the Master Microprocessor Assembly was assumed to be 80°C/W. The actual
value was unknown at the time of analysis, however, this is a typical value for
military approved dual-in-line packages.

5) The junction-to-case thermal resistances (03¢ for the TPM Threshold Detector
Assembly are shown in Table 9-1.

9.4 ANALYSIS METHOD

The system-level thermal model was shown in Figure 9-5 and represents a simplified
version of the more detailed system nodal map as shown in Figure 9-11. Predicted temperatures
at the nodes of Figure 9-11 were calculated using the CINDA thermal analyzer program available
at Hughes.




Table 9-1. TPM Threshold Detector Assembly Steady State Component operating

Temperatures.
MOUNTING MAXIMOM
CIRCUIT PART THETA FOWER SURFACE CASE JUNCTION ALLOWAELE
SYMEQL NUMEER Jc (WATTS) TEMP TEMP TEMP TEMP
(IEG C/W) (DEG ©) (EG C) (DBGC) (DEG O)
U10  M38510/06301EEB $0.000 0.380 74. 8l. 100. 108.
U011  M38510/06002EEB $0.000 0.100 71. 72. . 108.
712  M38510/06002EEB $0.000 0.100 74. 76. 8l. 105.
U13  M38510/10516/BEBJC 35.000 0.250 63. 65. 4. 108.
Ul4 M38510/06301EEB 50.000 0.380 T73. 78. o7. 105.
Ul5  CD4040ED/3AR $0.000 0.002 71. 71. 7. 105.
Ul6  M38510/06101BEB $0.000 0.250 665. 70. 82. 105.
Ul7  M38510/10578/BEBJC 35.000 0.375 €8. 73. és. 108.
Ul8  (D4040ED/3AR $0.000 0.002 71. 71. 72. 108.
Ul9  M38510/06101BEB 50.000 0.250 7. 76. 80. 108.
U220  M38510/10578/BEBJC 35.000 0.375 T73. 80. S5, 108.
U21  M38510/06302BEB $0.000 0.380 1714. 8l. 100. 108.
U2  M38510/06302BEB $0.000 0.380 75. 82. 101. 105.
U023  M38510R/17101BCB $0.000 0.001 0. 70. 70. 108.
U24  HS1-82C0EREH-8 50.000*** 0.00¢ 6S. 6S. 6s. 108.
U25  HS1-82C08RE-8 50.000*** 0.004 64. 64. 64. 105.
U6  HS1-82008RH-8 50.000*** 0.004 €5. 65. €s. 108.
027  M38510/06302EEB 50.000 0.380 75. a2. 101. 105.
U28  M38510/06302BEB 50.000 0.380 174. 8l. 100. 108.
U029  M38S51CR/17602BJB  40.000 0.00¢ 62. e2. e2. 10S.
U30  TRWS435** 0.001 €6. 66. 108.
U31  M38510R/17T602BJB  40.000 0.00¢ &2. e2. 2. 108.
U32  TRWS435°* 0.001 €6. €6. 10S.
U383  M3851CR/0SSSIEBEB 50.000 0.001 1. 71. 71. 108S.
Yl 809146-13 0.000 &2. 62. 108.
L10  M3S010/06ER33ALR 0.000 e67. ev. 105.
AR10 IM161H/883B 45.000 0.100 7. . 8l. 108.
AR1l HS2-3530RH-8 45.000*** 0.020 69. 70. 71. 108.
AR12 IM161H/883B 45.000 0.100 3. . 82. 108.
ARI3 HS2-3530RH-8 45.000*** 0.020 &68. 60. 70. 105.
AR14 HS2-353CRH-8 45.000*** 0.020 €9. 70. 71. 108.
R30  RNOSCHISOOFR 0.013 71. 84. 110.
R31  RCROTG102JS 0.013 72. av. 8.
R32  RCROMS11IS 0.013 73. av. 5.
R33  RCROMGS11JS 0.013 e68. 82. 8.
R34  RCROMGS11JS 0.013 e68. 83. 5.
R385  RCROYGS11JS 0.013 73. 8s. g5.
R36  RCROTMGS11JS 0.013 73. 86. 8.
R37  RNOSOH3162FR 0.013 72. 86. 110.
R38  RNOBOH3162FR 0.013 7. 8s. 110.
R¥  RCROMGISIIS 0.013 €8. a3. es.

NOTE: THE MAXIMUM ALLOWABLE TEMPERATURE IS THE UPPER LIMIT
OF THE "ACCEPTABLE" TEMPERATURE REGION.

== THIS COMPONENT IS A RESISTOR NETWORK AND DOES NOT
HAVE A JUNCTION.

=== B8,¢ WAS ASSUMED FOR THIS COMPONENT

(Continued)
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Table 9-1. TPM Threshold Detector Assembly Steady State Component operating

Temperatures (Continued).
MOUNTING MAXTMOM
CIRCUIT PART THETA  FOWER SURFACE CASE  JUNCTION ALLOWAELE
SYMBOL NUMEER g (WATTS) TEMP TEMP TR TEMP
(DEG C/W) (DEG C) (DG C) (DEG C) (DEG ©)
R4O RCROTGS511J5 0.013 7. 8v. 5.
R4l  RCROVGS11JS 0.013 %B. 73. g5.
R42  RCROVGS11JS 0.013 8. 7. gs.
R43 RCROTGS11J8 0.013 ©&9. 7. 95.
Re4 RCROPGS11JS 0.013 68. 83. 5.
R4S RCROTGS11J5 0.013 74. 88. 5.
R4S  RCROVGS1LIS 0.013 . a7. o5.
Re7 RCROYTGS11JS 0.013 7. 87. 5.
R48 RCROTGS11JS 0.013 74. 88. 5.
R4®  RCROWGS1LIS 0.013 T74. 88. e5.
RSO  RCROVGS1LIS 0.01L S8. 73. 5.
RS1  RCROVGS1LIS 0.013 S%8. 73. o5.
RS2  RCROVGS11JS 0.013 63. 78. o5.
RS3  RCRO7TGS1LIS 0.013 6&3. 78. 5.
R4  RCROVGS11IS 0.013 68. &3. g5.
RSS  RCROVTGS11JS 0.013 €8. 83. e5.
R%  RCROVGS1WIS 0.013 €8. 83. 5.
RS7  RCROTGS11IS 0.013 . 87. 5.
RS8 RCROTGS11JS 0.013 7. 8%7. 5.
RS9  RCROVGS11JS 0.013 7. 87. e5.
RS0  RCROTGS1LIS 0.013 . av. e5.
RE1 RCRO7GS11JS 0.013 0. 83. 5.
R&2 RCROMGS11JS 0.013 T70. 83. 5.
R&3 RCROTGS11JS 0.013 6€8. ‘82. os.
RS4  RCROVGS11JS 0.013 68. 83. e5.
RES  RROVGS1LIS 0.C13 €8. 83. es.
RS  RCROVGS1LIS 0.013- $8. 73. e5.
R67  RCROWGS1LIS 0.013 S8. 73. g6.
R88  RCROTG243JS 0.013 €9, 83. es.
RSO  RCROTGI94S 0.013 . 83. os.
R7T0  RCROVG243J5 0.013 69. 83. es.
R71  RCROVG304IS 0.013 68. 80. e5.
R72 RCROYGOATS 0.013 71. 84. es.
R73  RCROMGS1LIS 0.013 7. 88. 5.
R?4  RNOSOH4021 0.001 68. 9. 118.
C40  M30014/01-1883 0.000 7i. 71. 100.
C41  M30014/01-15S3 0.000 72. 72. 100.
G2  M30014/01-15853 0.000 71. 71. 100.
C43  M30014/01-1583 0.000 73. 73. 100.
Caq M35014/01-1553 0.000 70. 70. 100.
o1 M35014/01-1853 0.000 68. 6. 100.

NOTE: THE MAXIMUM ALLOWABLE TEMPERATURE IS THE UPPER LIMIT

OF THE "ACCEPTABLE" TEMPERATURE REGION.
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Table 9-1. TPM Threshold Detector Assembly Steady State Component operating

Temperatures (Continued).
MOUNTING MAXIMUM
CIRCUIT PART THETA POWER SURFACE CASE JUNCTION ALLOWABLE
SYMBOL NUMEBER dC (WATTS) TRMP TR TEMP TEMP
(DEG C/W) (G C) (EG C) (DEGC) (IEG C)
46 M38014/01--1553 0.000 75. 75. 100.
48 M33014/01-1553 0.000 67. 67. 100.
49 M32014/01-1853 0.000 74. 74. 100.
(0-5'0] M32014/01-1553 0.000 2. 72. 100.
cs1 M38014/01-1553 0.000 62. 62. 100.
cs2 M39014/01-1553 0.000 61. 6l. 100.
Cs3 K38014/01-1553 0.000 6. 5. 100.
CcH M38014/01-1553 0.000 68. 69. 100.
C6  M30014/01-1553 0.000 70. 70. 100.
7 M38014/01-1853 0.000 3. 73. 100.
cs8 M35014/01-15%83 0.000 72. 72. 100.
CH  M38014/01-1553 0.000 73. 73. 100.
G0  M385014/01-1553 0.000 3. 73. 100.
o8l M30014/01-1853 0.000 68. 68. 100.
(o -] M38014/01-~-1553 0.000 3. 73. 100.
o83 M368014/01-1553 0.000 72. 7. 100.
54 M38014/0Q1-1553 0.000 68. 68. 100.
oss M35014/01-1883 0.000 74, 74. 100.
(0:57] M39014/01-1553 0.000 75. 75. 100.
QB7 M38014/01-1553 0.000 62. a2. 100.
88 208535-1 0.000 6. 67. 100.
(02 °) M35014/01-1553 0.000.. &6. €6. 100.
cvo 808535-1 0.000 6s. 65. 100.
c7l M38014/01-1553 0.000 69. 9. 100.
cr2 ¥38014/01~-1853 0.000 6a3. 63. 100.
crs M39014/01-~1853 0.000 7. 71. 100,
cr4 M30014/01-1583 0.000 74. 74. 100.
(07¢-] M35014/01-1553 0.000 68. 65. 100.
crs M38014/01-1853 0.000 ¢€8. 69. 100.
cr M38014/01-1883 0.000 69. 69. 100.
crs M39014/01-18%3 0.000 6s. 65. 100.
cro M38014/01-15%3 0.000 72. 72. 100.
cso M36014/01-1553 0.000 68.. €0. 128.
TOTAL CF PART DISSIPATIONS: 4.841 VATTS
AVERAGE JUNCTION TEMPERATURE: 7.5 IEGC

NOTE: THE MAXIMUM ALLOWAELE TEMPERATURE IS THE UPPER LIMIT
OF THE 'ACCEPTAELE’ TEMPERATURE REGION
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Figure 9-11. Detailed FMDS nodal map.
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The board analyses were performed using CINDA with preprocessing accomplished
through the use of Hughes Product Analysis Laboratory's NEWTS5 and ATDP programs.
NEWTS permits the digitized input of board and component position data, while ATDP
automates certain phases of input and output table format.

9.5 RESULTS

The system-level results are presented as curves of AR (normalized radiator area) versus
Trot and as curves of Q (heater dissipation in watts) versus TcoLp with Ag as a parameter. The
variables Tyot and TcoLp are taken at the top of the plasma generator electronics box, node 11
in Figure 9-11. This node was chosen to provide a reference electronics-module mounting
temperature. If this value is too high, then the electronic components will have high operating
temperatures resulting in reduced reliability and shorter life time. The curves of Figure 9-12 are
labeled as follows:

C-  FMDS conductively connected (thermally) to the satellite with mounting surface

temperatures of 43°C and -13°C.

R-  FMDS radiatively connected to the satellite with internal satellite subsystems at

43°C and -13°C.

I - FMDS insulated from the satellite.

The connection referred to here is from the FMDS honeycomb mounting plate to the
satellite as shown in Figures 9-5 and 9-11. The radiator size Ay in Figure 9-12 was determined
from the "hot case" by calculating the temperature T for which Ty; = Tyor. If the radiative
area is less than this area then Ty; > Tyor; if the area is greater then Ty; < Tyor.

All curves exhibit a drop’in temperature as the radiator area increases. The slopes of the
curves vary with the insulated case showing the greatest variation in temperature with a change
in radiator area. The conductive ca<e provides the best thermal connection with the satellite and
shows the least variation of Tyor with a change in area.

The heater power in Figures 9-13 through 9-15, assumed to be distributed uniformly over
the enclosure sides, was determined from the "cold case" with the radiator area as a given and
calculating the node 11 temperature for which Ty; = TcoLp. If the heater dissipation is greater
then Ty; > TcoLp; if the dissipation is less then Tq; < TcoLp.

Figures 9-13 through 9-15 plot curves of Q versus Tcorp for the conductive, radiative,
and insulated cases respectively. Depending on the mounting arrangement, these curves can be
vsed to estimate the heater value that would be required to keep component temperatures within a
specified operating temperature range.

Given the electronics box boundary temperatures for the "hot case"”, the three electronics
assemblies were analyzed to provide board temperature maps for given component dissipations
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and mounting technique. The results of the analyses are presented in Tables 9-1 through 9-3.
Table 9-1 lists the component case and junction temperatures for the TPM Threshold Detector
Assembly. These resnlts indicate that all components are operating below their maximum
aliowable operating temperature limit. The same thing can be said for the Plasma Generator
Electronics (Shelf 2) Assembly listed in Table 9-2 and for the Master Microprocessor Assembly
listed in Table 9-3.

9.6 FMDS SYSTEM THERMAL DESIGN

From Figures 9-12 through 9-15, a radiator area (Ag) and a maximum required heater
power (Q) can be determined that will allow the FMDS system to operate for any of the three
mounting configurations (conductive, radiative, or insulated). The analysis of the three
electronics assemblies shows that for a node 11 temperature {upper boundary of the Plasma
Generator Electronics Assembly) of 61°C, that some of the TPM Threshold Detector Assembly
component junction temperatures are within 5°C of the maximum allowed (Table 9-1).
Therefore, T;; should be maintained at <61°C to keep the electronic components below an
acceptable upper temperature limit.

Figure 9-12 shows that for AR = 0.25, Tyor(which is really T;;) will be <61°C for all
three mounting configurations. If we choose Agr =0.3 to allow for some margin in the design,
then Ty for the three mounting configurations will be:

C- Ti1=41°C

R- Ty =43°C

I - Ty =53°C.

Minus 24°C is the lowest tethperature that the system will be tested to; therefore,

T1; =-24°C is the coldest temperature that can be allowed and still guarantee that the system will
function properly.when turned ON. With the system turned completely OFF, the electronic
components will come to equilibrium at -24°C and then start to warm up immediately when
turned ON. Figures 9-13 through 9-15 assume that the system is in the "monitoring” mode and
dissipating 10.5 W. Under this condition with Ar = 0.3, the heater powers required to keep

T11 (Tcorp) 2 -24°C for the three mounting configurations are:

C (Figure 9-13) - Q = <0.0 W (i.e., heater not required)

R (Figure 9-14) - Q = <0.0 W (i.e., heater not required)

I (Figure 9-15)-Q=4.0W.

The heater powers required to keep Ty 2 -24°C with Ag = 0.3 when the system is
completely OFF, can be determined from Figures 9-13 through 9-15 by extrapolating the curves
to the point at which they intersect the value of -24°C and adding 10.5 W to the value obtained
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Table 9-2. Plasma Generator Electronics (Shelf 2) Assembiy Steady State Component

Operating Temperatures.
CIRCUIT PART
SYMECL NUMEER

ClACHE  M39006/22-0568
ClBCH  M3B008/22-0568
o 0. ¢ MB3421/01-22558
020 ¢ M38014/01-1523
cD MB83421/01-2288S
C8AD M35006/22~0568
C8BD M30006/22-0568
COACE  MO8003/22-0554
CaBCE  M39008/22-05%4
XX  M30008/22-0854
CICE  M39008/22-05%4
Cl4D MB3421/01-4317S
C21D M39003/01-3094
22D M32014/02~-1310
G5 M39014/02-1310
CR1D JANTXVSIRIM
R3CH JANTXVINEB16
F1CH 98824413

F2CH 888244-13

F1D 868244-13

F2D 988244~13

QICH JANTXV2NETEG5
QD JANTIV2NGTE6
R4D RCR32GS11J5
RSCH RCR20G221JS
RSD RCROTG100JS
R24CH  RCROTG100JS
R3GD RCR42G223JS
R4OD RWRSOS1ROOFR
R42D RCR32G101JS
TICH 1000467

TiD 1099463

TCH 1099460

T2D 1090460

TSCH 1099460

T3D 1080460

VR1D JANTXVING470
VRECH  JANTIVIN447O
VR7CH  JANTXIVING47D
VRED JANTIVING470

TOTAL OF PART DISSIPATIONS:

1.500

AVERAGE JUNCTION TEMPERATURE:

NOTE: THE MAXTMUM ALLOWAELE TEMPERATURE IS THE UPPER LIMIT
OF THE 'ACCEPTAELE’ TEMPERATURE REGION
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Temperatures.
CIRCUIT PART
SYMBOL NUMBER
u1 HS1-802835RH/8
v2 co43508
us MAG116S0S
ve MAG116S0S
('] ] HS1-6641RM/B
us NHS1-6641RNH/H
utre HS1-86641R¥M/B
utt HS1-6E84IRN/B
vi2 CDe0175
U3 SA2999-1
vie SA2099-~1
u1s SA2999~1
ute SA2999-1
u1? SA2999-1
v18 $A2999-1
VAR HS1=-54C138RN/B
uae HS1-34C138RH/B
u21 HS1~-S4C138RH/B
va22 HS1-82CO08RN/S
ua23 HS1=82C88RH/B
u2e cDe093
v2s cD4081
CR! JANTXINI 880
R1 RESISTOR
R2 RESISTOR
R3 RESISTOR
71 CRYSTAL
ct CAPACITOR
c2 CAPACITOR
€3 CAPACITOR
cs CAPACITOR
cs CAPACITOR
cs CAPACITOR
c? CAPACITOR
c11 CAPACITOR
c12 CAPACITOR
€13 CAPACITOR
Cle CAPACITOR
c1s CAPACITOR
c1e CAPACITOR
c17 CAPACITOR
cis CAPACITOR
c1y CAPACITOR
c2e CAPACITOR
c21 CAPACITOR
c22 CAPACITOR
€23 CAPACITOR
C24 CAPACI TOR
cas CaPacITOR
c26 CAPACITOR

MOUNTING
POWER SURFACE CASE
(WATTS) TEwP TEMP
- (DEG C¢) (DEGC C)
0.018  67. 67.
0.006 66. 7.
e.100 69. 72.
0.100 9. 72.
0.005 8. 6s.
¢.005 §7. 67.
e.005 &7, 67.
6.005 67. .7.
0.000 66. ss.
e.005 67, 87.
s.005 67, 7.
0.008 67, .7.
0.008 7. 67.
0.00S 63, .s.
0.005 7. 67.
0.002 §6. ss.
0.002 L{ " 66.
¢.002 66, 6s.
8.0804 66. 66.
0.004 65 s6.
0.001  68. 6s.
0.001 6. s6.
0.000 66, 66,
0.009 7. 67.
0.007 6. 66,
0.000 66, 66.
0.000 §7. 67.
¢.000 7. 67.
e.000 7. 67.
0.000 6. 66,
0.000 6. 66.
0.000 ¢6. 66.
e.000 s8. 68.
0.000 87, 67.
0.000 7. 67.
0.000 67, 67.
e.008 7. 67.
e.000 ¢7. 67.
e.008 6. 6s.
e.000 66. ¢e.
e.000 65. ¢6.
0.000 6. ¢s.
¢.000 66. ..
s.000 @7, 67.
e.000 7. 67,
v.800 8. .s.
0.000 ss. ..
0.000 6. T
0.009 &6, s6.
e.e00 ¢ 66.

JUNCTION
TEWP
(0EC C)

68.
e7.
8e.
8.
68,
68.
¢8.
8.
es.
8.
e7.
67.
e7.
8.
es.
7.
7.
6¢.
67.
67.
6.
66.
66.

Table 9-3. Master Microprocessor Assembly Steady State Component Operating

HAX I MUM
ALLOWABLE
TEupP
(ot ¢C)

198,
100.
100,
100,
100.
188.
100.
100.
100.
100.
100.
100.
160..
100.
180,
160.
100.
100.
180.
1060.
100.
100.
106.
1660.
108.
100.
100.
106.
100.
100,
100.
100.
100.
100.
100.
100.
168.
100.
10¢.
100,
100.
100,
160,
100.
100.
100,
100.
100,
100.
100,

e JUNCTION TEMPERATURE APPROXIMATED BASED ON 8,. = 80°C/W
TOTAL OF PART DISIPATIONS
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(because the curves were calculated for the "monitoring” mode in which 10.5 W is disipated).
This results in:

C (Figure 9-13) - Q =<0.0 W (i.e., heater not required)

R (Figure 9-14)-Q=8.5W

I Figure9-15)-Q=145W.

The FMDS system will be cold soaked during environmental qualification at -24°C and,
therefore, its operation after being exposed to colder temperatures will not be guaranteed.
However, the electronic components themselves have storage temperature ratings of -65°C. The
heater powers required to keep Ty; > -65°C can be estimated for the three cases (again by
extrapolation) as:

C (Figure 9-13) - Q=<0.0W (i.e., heater not required)

R (Figure 9-14) - Q=<0.0 W (i.e., heater not required)

I (Figure 9-15)- Q=6.0W.

The above discussion leads to a FMDS system thermal design where 30% of the FMDS
cover (Ar = 0.3) is covered with radiator to keep the system cool and a 15 W heater is included
to keep the system warm. This design will work for any cne of the three mounting
configurations (conductive, radiative, or insulated).

9.7 DISCUSSION AND RECOMMENDATIONS

It should be noted that the data presented in Figures 9-12 through 9-15 use one node
temperature (T;;) to represent the temperature of a typical electronics mounting surface within
the system. A detailed temperature map of the system is provided by the CINDA computer run.

The following factors can influence the temperatures presented in this report:

a) Host vehicle and mounting -- effects of solar concentration, shading, etc.

b) Launch and transport environment -- worst case conditions might be encountered

in transport.

c) Dissipation and mode of operation -- revised mission profile or operating

experience might change these.

d) Transient effects -- post-eclipse bus voltage can increase due to increased solar

cell efficiency at low temperatures.

It is recommended but not required that bonding be used with all dissipating components
on the TPM Threshold Detector Assembly and the Master Microproccesor Assembly. Itis
required and was assumed in the analysis that bonding (HP16-103, Type X1II is recommended) is
used for all dissipating components on the Plasma Generator Electronics (Shelf 2) Assembly.

When the FMDS is integrated with a vehicle, emphasis should be placed on an
understanding of items a-d above. A careful evaluation of these, keeping in mind the choice of

207




satellite and launch mode, will determine the applicability of the present data and curves for the
particular application. If significant solar concentration, shading, changes in dissipation, etc.
occur, the computer model should be updated to reflect these changes.
In particular the following differences between this analysis and the delivered hardware
should be noted:
1) The delivered hardware has no cover, the ESA and one SPM locations are
interchanged, and the TPM was not installed (comparison of Figures 2-2 and 9-1).
2) The system, without the TPM, dissipates approximately 5.6 W in the "monitoring"
mode and 20.5 W in the "operating" mode. With the TPM installed, it would
dissipate approximately 14 W in the "monitoring" mode and 29 W in the
"operating” mode.
3) The components are not painted black.
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SECTION 10
SYSTEM TEST RESULTS

The results of system level testing of the breadboard and flight units of the FMDS are
presented in this section. Only very limited thermal data and no vibration or EMI data are
available.

10.1 BREADBOARD TEST RESULTS

There were two demonstrations of the breadboard hardware at Hughes Research
Laboratories (HRL) during 1985. The first demonstration featured a review of the breadboard
design and a limited demonstration of the hardware capability. The second demonstration featured
the full capabilities of the breadboard FMDS system.

The plasma source and sensors for the breadboard demonstration are shown mounted on
the test fixture in Figure 10-1. An aluminum plate was mounted flush with the plasma source and
sensors to simulate a cover over the FMDS. This aluminum plate was then covered with VDA
backed 5-mil Kapton to simulate a thermal blanket.

The test facility is shown in Figure 10-2. The FMDS plasma source and sensors were
mounted on a plate inside the vacuum chamber while most of the electronics were mounted on a
plate outside the vacuum chamber. The two plates were connected together with an 8-in aluminum
tube and mounted to the chamber with a G-10 glass/epoxy flange. The aluminum tube shielded the
interconnect wires between the sensors and the electronics and the G-10 flange allowed the entire
FMDS to charge or be biased 20 kV relative to facility ground. The facility contained an electron
gun, proton source, and UV source to simulate the space environment, and a Faraday cup and
Langmuir probe for diagnostic measurements of the simulated environment and the plasma from
the plasma source. The dielectric target was designed to charge up and create arcs for the TPM to
detect.

10.1.1 Test Sequences
The first demonstration of the FMDS breadbourd consisted of the following sequence of
events:

1) Plasma Source in operation

2) Detection of protons by the ESA

3) Single command tum-OFF and burst volume fill of the Plasma Source

4) Detection of differential charging by the SPM

5) Simulation of spacecraft charging to -2.5 kV

6) Single command turn-ON of the Plasma Source and discharge of the simulated
spacecraft

7 Tumn-OFF of the Plasma Source and recharge of the simulated spacecraft.
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Figure 10-1. FMDS breadboard plasma source and sensors mounted on the test fixture.
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The second demonstration consisted of the following sequence which demonstrated all of
the FMDS capabilities.

1. Demonstration of Plasma Source

- <l1s ignition
Steady state emission current
Emission current during ignition
Throttled operation
Emission current at throttled setpoints

2. Demonstration of ESA Operation
- Operaiion of sun sensor
- Detection of ions
- Detection of electrons
- Ion-ESA algorithm
- Electron-ESA algorithm

3. Demonstration of SPM Operation
- Charge Kapton front surface with e-gun
- Turn ON UV source with e-gun ON; front surface discharges
- Resetting of the SPM using UV and grounding relay

4. Demonstration of TPM Operation
- Inject pulses of known amplitude, polarity, width,
and repitition rate; correlate with telemetry
- Produce arcs and detect with TPM
- Reverse antennas; TPM does not detect the arcs

5. Demonstration of Controller

- Output telemetry
Commands
Setting of charging flags
Masking of charging flags
Change charging-flag threshold level
Controller turn-ON of Plasma Source
Controller turn-OFF of Plasma Source
Manual control of Plasma Source

6. Demonstration of System

- Plasma within 30 s of threshold level

- Charge entire FMDS; detect charging with ion-ESA;
auto turn-ON of Plasma Source; FMDS discharge

- Detect high-energy electrons with electron-ESA;
auto turn-ON of Plasma Source; Plasma Source stays
ON until high energy electrons disappear

- Charge the SPM; detect charging; auto turn-ON of
Plasma Source; SPM discharge

- Generate arcs; detect arcs with TPM; auto turn-ON
of Plasma Source; elimination of arcs

- Activate all sensors; see which one turns the Plasma Source ON
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10.1.2 Demonstration Test Results

The first demonstration was very short (30 minutes) and demonstrated the seven items
listed above. This demonstration served to show the basic capabilities of the FMDS and the test
facility.

The system was operated in an autonomous manner for the second demonstration to show
that it could autonomously detect spacecraft charging and turn ON its plasma source to negate that
charging. Many of the test results from this demonstration have been discussed previously in the
sections on the individual instruments. The other significant results of this demonstration are
discussed below.

The ion ESA and its algorithm were tested by charging the entire FMDS negatively with
respect to facility ground (spacecraft frame charging) using the electron gun while protons were
present in the chamber. The sharp increase in the proton spectra moved to higher energy channels
as the FMDS charged more negative. When the peak moved past the threshold charging level as
determined by the ion-ESA algorithm, the plasma source was automatically turned ON. Upon
ignition of the plasma source, the FMDS potential immediately returned to facility ground potential.

The electron ESA and its algorithm were tested by increasing the energy of the electron
beam until the sum of the counts in the two highest energy channels of the electron ESA exceeded
the sum of the counts in the lower energy channels. This indicated that a charging environment
was present and the plasma source was automatically turned ON to prevent charging from
occuring. The plasma source remained ON until after the simulated charging environment was
removed and the plasma source preset ON time had expired. Both requirements had to be met
before the plasma source would turn OFF.

The Kapton surface on the SPM was charged negatively (differential charging) using the
electron beam and when the charging exceeded the threshold level the plasma source was
automatically turned ON. The differential charge on the SPM was immediately removed and the
SPM remained uncharged as long as the plasma source was ON. The UV source was also used to
remove the charge from the SPM indicating that the SPM could be rezeroed during sunlight
conditions. The UV source removed the charge with the electron gun ON or OFF.

The TPM was tested by charging Kapton surfaces inside the vacuum chamber using the
electron beam until they arced to other surfaces or ground. The first arc was detected by the TPM
and the plasma source was automatically turned ON. No further arcing was observed since the
Kapton surfaces cannot charge with the plasma from the plasma source present. As discussed in
Section 5, when the TPM antennas were reversed such that the internal antenna saw higher
amplitude signals than the external antenna, the plasma source was not turned ON.
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The Controller was tested by having it automatically control the FMDS as the other
tests were being performed. The ability to mask instruments, change threshold levels, and
manually control the plasma source by remote commands was also demonstrated during this
testing.

The above tests were conducted with only one sensor at a time activated. All sensors
were activated and the electron gun turned ON to see which sensor would respond fastest.
With the FMDS system floating from facility ground, the ion ESA activated the plasma source
as expected (spacecraft frame charging). With the FMDS floating, frame charging occurs
much faster than differential charging, therefore, the SPM did not see a differential charge
before the ESA activated the plasma source. The SPM activated the plasma source
(differential charging) when the FMDS system was connected to facility ground. Under these
conditions the ESA never sees a shift in the ion spectra because the FMDS frame cannot
charge. However, differential charging does quickly occur; therefore, the SPM activated the
plasma source. In both cases there was not time for dielectric surfaces to charge to high
enough potentials for arcs to occur, and therefore, the TPM did not activate the plasma
source.

10.2 FLIGHT HARDWARE TEST RESULTS
The flight hardware subsystems were integrated together, calibrated, and tested as a
complete system. The TPM was not included in any of these.

10.2.1 Integration Testing

Several problems were discovered and solved during the integration testing. The first-
of these was the noise problem with the ESA when the plasma source power supplies were
operated. This problem and its solution were discussed in Section 4.4.

When the two SPMs were connected into the flight harness, their telemetry outputs had
a low-frequency (=0.5 Hz) oscillation on them. If only one SPM was connected into the
harness, then the oscillation was not present. This was traced to a beat frequency between the
tuning forks in the SPMs. The tuning forks oscillate at nominally 330 Hz, but are slightly
different causing the beat frequency. This problem was solved by decoulpling the tuning forks
from the £12-V power source and the remainder of the SPM circuitry using 200 ohm resistors
and =50 YF capacitors. This fix added =40 g to the mass of each SPM.

The first time that we tried to start the plasma source using the flight feed system, the
software tried to start it four times. The source came on each time but went out shortly
thereafter. The stripchart recording of the discharge and keeper voltages indicated that the
burst volume upstream of the burst valve was too small. The burst volume was determined to
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be =3 cm3 when it should be =16.5 cm3 (1 in3). The volume was increased by adding a
hollow block to the top of the flow impedance assembly. We were able to manually start the
source and keep it operating with this modification,

We were able to start the plasma source manually (sending separate commands to
actuate each valve, power supply, and set point); however, when we tried to start the source
under automatic control of the software, the software would turn it back OFF =6 s after
startup. This was traced to the plasma-source mode-manager routine in the software which
monitors the keeper voltage and current to determine the operating condition of the plasma
source. The mode-manager routine did not shut the source OFF during manual startups
because it is not active for manual startups. Several modifications were made to the mode-
manager routine in the following order to fix this problem. It was first thought that the mode
manager was shuting the source OFF because it detected that the keeper voltage was above
25V, even for a short period of time. The software was modified to require that the keeper
voltage be above 25 V for >1 minute or above 40 V for >8 s. One reading below these values
also resets the timers. The software still turned the source back OFF. Then it was discovered
that the 10( ohm resistor which is in the keeper output for =40 s after the source starts, was
making the telemetry look like the keeper voltage was >40 V. The software was modified to
raise the voltage limits during startup and then revert to the lower values when the plasma-
source-ON flag gets set (=3 minutes after startup). The software stili turned ihe source bac
OFF. The final problems in the mode manager were: 1) that the executive routine called the
mode manager before it called the ADC to update the analog telemetry data; therefore, the
mode manager was operating on 4-s old data, and 2) that the software was detecting that the
keeper current was <40 mA; mainly due to problem 1) but also only one time of detecting
<40 mA would cause a shutdown. The software was modified to call the ADC before calling
the mode manager and also to require three successive detections of <40 mA before shuting
the source OFF. After these last modifications, we had no more problems with the software
shutting the source OFF when it should not

Randomly occurring current spikes were observed on the input power bus. These
spikes were actually 4-s wide pulses that were larger in amplitude for higher input bus
voltages as shown in Figure 10-3. This was due to a hardware problem and a software
problem. The time delay circuitry of Figure 8-3 (U23, U22, and Q11) is reset by a narrow
pulse from the controller once every four seconds such that Q11 does not turn ON. A problem
in the software was causing the controller to send a 4-s wide reset pulse or. occasion. This
wide pulse was allowing crosstalk between the two halves of U23 to partially turn Q11 ON,
causing a large current draw through the coils of the valves and relays, but not large enough to
actuate them. The second half of U23 (Figure 8-3) was an active part of the circuit at this
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time, and the current through the light-emitting diode between pins 7 and 8 was causing a few
HA to flow (due to crosstalk that exists in these devices) through the transistor between pins 13
and 14 and partially tuming Q11 ON. The second half of U23 was no longer needed for
ground isolation (due to an earlier circuit modification) so it was removed from being an
active part of the circuit, and the software problem was rectified. We did not observe any
more anomolus current spikes.

The partial pressure of xenon in the vacuum facility during times when the burst
valve was closed, led us to believe that there was a small leak in the feed system. The partial
pressure was still high with the high-pressure valve closed and the bypass and burst valves
open. This led us to believe that the leak was upstream of the high pressure valve in the
expellant tank or bulkhead on the end of the tank. We were never able to find a leak in the
feed system before the FMDS was delivered; however, this should be verified before the
system is flown. The pressure transducers (high pressure and low pressure) in the feed system
should also be replaced before flight. The pressure transducers in the system are psia units
which are sealed on the outside (reference side) with a nonhermetic epoxy. Therefore, the
atmospheric pressure trapped by the epoxy will slowly leak away when the FMDS is under
vacuum conditions for a long period of time (e.g., when in space). This will cause the zero of
the pressure transducers to slowly shift by =14.7 psi. This would riot be a major problem for
the high pressure transducer since it is 14.7 psi out of 530 psi (2.8%) at the start of life. For
the low pressure transducer, however, this represents 14.7 psi out of 10 psi (147%). Pressure
transducers of the psig type were purchased but were not delivered to Hughes until after the
FMDS was delivered to the USAF. The psig units have a vent tube on the outside (reference
side) and, therefore, can be calibrated under vacuum conditions to simulate the flight
environment.

10.2.2 Software Startup Options

During testing of the full system it was determined that there was a possibility of losing
some of the EEPROM write software since it was stored in EEPROM. If other parts of the
software were lost from EEPROM at the same time, then there would be no way to recover
from this loss and a catostrophic failure would have occurred. Therefore, a concentrated
effort was undertaken to partition the software with all vital power-up, command and
telemetry, and EEPROM write software in the 2K of PROM such that all of the software in
EEPROM could be reloaded from the ground if necessary. This resulted in three startup
options for the system.
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1) If EBy is present at location 1002y in EEPROM, then the system will perform an
automatic startup upon power being applied. The senors will be turned on, and the FMDS
will go into its monitoring mode immediately.

2) If EBy is not present at location 1002y, ther the software will look fo1 28y FDy at
memory locations 47A7y and 47A8y respectively. If 284 FDy is not present (which the odds
are it will not be on power up since these memory locations are in RAM), then the software
will write the stop-flag at location 1001y and trap the software in the lower 2K of memory
(PROM). This will be indicated by the Plasma-Source Mode being FOy in the telemetry
stream. Sending command 93y FFy FFy XXy will clear the stop-flag and the full software
will be executed. If the microprocessor gets reset for axfy reason, 28y FDy will still not be
present and the stop-flag will be set again.

3) If after sending comamand 93y FFy FFy XXy, command 3Cy is sent, then 28y FDy
will be written to memory locations 47A7y and 47A8y. If a reset of the microprocessor
occurs now, then the software will not write the stop-flag and an automatic startup will occur.
However, if the system is powered down and then back up, the 28y FDy will go away and the
stop-flag will be set. After sending commands 93y FFy FFy XXy and 3Cy there are two
options; a) turn the instruments ON manually, or b) send command 37y which wiil halt the
microprocessor. The watchdog timer will cause a reset of the microprocessor, and an
automatic startup will occur.

10.2.3 Calibration Data

The calibration curves for the telemetry outputs from the plasma source power
supplies, input bus voltage and current, temperatures of the plasma sour.e electronics, and
bipolar-log electrometer are presented in Figures 10-4 through 10-13. The calibration curve
for the plasma source electronics temperatures was calculated from published data on the
characteristics of the thermistors used. The other calibration curves were obtained by
measuring the parameter with a DVM and plotting it against the output of the telemetry.

10.2.4 Input Power Profiles

The input power and/or input current for the various FMDS operating modes are
presented below. The inrush current profile during application of bus power to the FMDS is
shown in Figure 10-14. Current spikes of up to 3.7 A occur during the first several hundred
ms after power application. The power profile during the automatic cathode-conditioning
mode is presented in Figure 10-15. The FMDS draws 16.8 W for 3 hrs, 6.2 W for 0.5 hrs,
28.0 W for 1 hr, and then retuns to the monitoring mode where it draws 5.5 W. Figure 10-16
shows the bus current (for a 37-V bus) during startup and shutdown of the plasma source.
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Current spikes 125-ms wide and up to 1.6-A in amplitude can be seen during actuation of the
valves. Nominal power levels drawn from the input bus due to the various FMDS subsysteins
are listed in Table 10-1.

Table 10-1. FMDS Bus Power Due to the Various FMDS Subsystems.

FMDS SYBSYSTEM NOMINAL BUS POWER
W
CONTROLLER ONLY OPERATING 3.7
ESA 1.6
SPM 1 0.18
SPM 2 0.18
TPM 7.6*
PLASMA SOURCE RELAY CLOSED, SUPPLIES OFF 0.6
PLASMA SOURCE OPERATING SP 00 11.5
PLASMA SOURCE OPERATING SP 01 111
PLASMA SOURCE OPERATING SP 10 14.7
PLASMA SOURCE OPERATING SP 11 13.8

* Estimated

10.2.5 Plasma Source Operating Characteristics

The plasma source was operated at all of its setpoints during system testing. The
measured emission current for a 30-V bias at each of the setpoints is listed in Tatle 10-2, and
the nominal keeper and discharge currents for the four operating setpoints are listed in Table
10-3. Figure 10-17 shows the keeper voltage, discharge voltage, and emission current during
startup of ti:e plasma source. The emission current stays above 0.5 mA after the discharge
supply turns ON at 4 s and reaches its final level of 1.13 mA in 15 to 20 minutes. The keeper
and discharge voltages stabilize out at 15 and 20 V respectively in the same time frame.
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Table 10-2. Measured Emission Current from the Plasma Source for a 30-V Bias.

OPERATING POINT EMISSION CURRENT
mA
SP11 1.93 mA
SP 10 1.13 mA
SP 01 0.69 mA
SP 01, DISCHARGE SUPPLY OFF 0.66 mA
SP 00 0.74 mA
SP 00, DISCHARGE SUPPLY OFF 0.72 mA.

Table 10-3. Nominal Keeper and Discharge Currents for the Four Operating Setpoints.

SET POINT KEEPER CURRENT DISCHARGE CURRENT
mA mA
SP11 50 250
SP10 250 200
SPO1 400 0
SP 00 420 0

The source did not operate in a stable manner when operated at SP 11. The discharge
voltage had transients going down to =8 V and the discharge current had transients going to
over 600 mA. With 30 ohms between the discharge power supply and the plasma source, the
voltage on the power supply side of the resistor was stable while the voltage on the plasma
source side of the resistor was still unstable. This proves that the instability is in the plasma
source and not in the power supply. We do not believe that the oscillations observed are
destructive; however, we do not have any lifetest data to prove this; therefore, we do not
recommend operating at SP 11.

10.2.6 ESA Testing

The ability of the ESA to detect both protons and electrons was demonstrated under
simulated geosynchronous environmental conditions. The electron channel entrance aperature
was masked down a factor of ~40 using three small holes in a plate over the normal entrance
aperature. This was done to reduce the electron counting rate to a value consistent with a ten
year lifetime for the channeltron. The arc length of the detection plates (only 28°) in the ESA
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is not sufficient to prevent high energy electrons from being counted by the ion channel.
Large counts were recorded by the ion channel when the ESA was exposed to only high
energy electrons with no protons present. We understand that this result is consistent with
data collected on orbit from similar type instruments. The only known fix is to rebuild the
detection plates with a larger arc length.

10.2,7 Overall System Testing

The entire FMDS was biased negative with protons present in the vacuum chamber.
When the potential of the FMDS exceeded the threshold level for the ion ESA, the algorithm
in the controller detected a hazardous condition and the plasma source was automatically
started. Similarly, when the SPMs were charged negative past their threshold level using the
electron gun, the controller automatically started the plasma source. The functionality of the
FMDS for all of its operating modes and capabilities was demonstrated during the system
testing. All of the commands listed in Appendix A were sent to the FMDS and the proper
response verified.

10.2.8 Thermal Testing
The thermal testing of the FMDS system was limited to one thermal cycle as follows:

. The plasma source was started and the FMDS was operated while transitioning
from ambeient temperature to -14°C.

. The FMDS was turned OFF and cold soaked at -14°C for >4 hrs,
. The FMDS was jurned ON and the plasma source started

. The FMDS was operated while transitioning to 60°C

. The FMDS was turned OFF and hot soaked for >5 hrs.

. The FMDS was turned ON and the plasma source started

. The FMDS was operated while transitioning back to ambient temperature.

No anomalies in the operation of the FMDS were observed during this thermal cycle.
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SECTION 11
CONCLUSIONS AND RECOMMENDATIONS

A discharge system has been designed, fabricated, and functionally tested that can
autonomously; detect that absolute and/or differential charging is occurring on a spacecraft; turn
on its plasma source to negate that charging; operate its plasma source until the charging hazard
has passed; and then return to its monitoring mede. The hardware and software demonstrated
their ability to perform these functions under simulated charging conditions that exist at
geosynchronous orbit. The system needs to be environmeéntally qualified (thermal testing,
vibration testing, and EMI testing) before it can be flown.

The following upgrades to the system are also recommended before the system is flown:

1

2)

3

4)

5)

Modify the ion ESA to have a larger arc length in its detection plates for
improved discrimination against high-energy electrons.

Lower the number of sweeps required by the ESA algorithms to detect a
hazardous condition in order to improve the system response time.
Replace the pressure transducers in the feed system with psig type units in
order to prevent zero drift of these sensors on orbit.

Test the feed system for leaks to prevent the slow loss of expellant on
orbit,

The system was delivered with the microprocessors and PROMS in the
controller in sockets and without conformal coating on =75% of the
electronics. The microprocessors and PROMS should be soldered directly
into their PC boards, and all of the electronics should be conformally
coated.
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APPENDIX A

FMDS COMMANDS AND TELEMETRY




TELEMETRY LIST
(updated 4/7/89)

ORDER IN ORDER IN
OUTPUT TLM INTERNAL
SEQUENCE _ IDENTIFIER/CONVERSION EQUATION TMI1STACK
DECIMAL DECIMAL
0* 1st Frame-ldentification byte (AA) 0

1 2nd Frame- Identification byte (55) 1

2* System Status Word: 2

bit 0: 4-s Flag fault (failed to execute in 4 s)

bit 1: Analog Fault (failed to complete in 250 ms)
bit 2: TPM Fault (failed to complete in 250 ms)
bit 3: ESA Fault (failed to complete in 250 ms)
bit 4: Shorted instrument on powerup

bit 5: Plasma source went out 4 times

bit 6: Plasma source failed to ignite after 4 tries
bit 7: Command error (illegal command, or
redundant pairs did not match)

3 Telemetry Start Byte (4 to 179 dec) 3
----------- The above bytes are always sent--------

4 Charging Flag: 156
bit 0 = IESA
bit 1 '= eESA
bit 2 = SPM{
bit 3 = SPM2
bit 4 = TPM
bit 5 = Electrometer

5 Plasma-Source-ON flag 157
6" 1 Plasma-Source Mode: 158
0=OFF
1=CATHCOND
2=AUTO
3=0N
4 = MANUAL
7 IESA Vehicle Frame Potential 47
(values correspond to iESA channel energies)

8 eESA Charging Flag 48

" When the master microprocessor is in its confined mode (operating in PROM only), only the data
marked with asterisks are updated.

T The plasma-source mode is displayed as {0 when the master microprocessor is in confined mode.
(The plasma source is actually OFF under this condition.)

239




10
11

12
13
14
15
16

17

18
19
20
21
22
23
24
25

SPM Ranges:

bit 0 = SPM{

bit 1 = SPM2

0 = LOW; 1 = HIGH range
SPM1 mantissa
SPM2 mantissa

SPM yoltage:

255
SPM1 Sun sensor (8-bit ADC result)
SPM2 Sun sensor
TPM Positive counts
TPM Negative counts
Emission Current:

Electrometer Characteristics

Electrometer Current, A

Negative Cutrens

Positive Currents

1 3
100 127128 200 255
Counts

Last Command Byte

Plasma-Source Data
Discharge Voltage
Discharge Current
Keeper Voltage
Keeper Current
Cathode-Heater Voltage
Cathode-Heater Current
Pressure upstream of burst valve
Tank Pressure
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145

16
16

V= -[2. 5kV - 3KV o sppm_ mantissa] o 107 M-I

30
31
32
33




26
27
28
29
30
31
32
33
34

35
36

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59

TPM Data (numbered 26 to 38):
Amplitude of highest external pos pulse
Amplitude of highest external neg pulse
Width of highest-ampl external pos pulse
Width of highest-ampl external neg pulse
Amplitude of widest external pos pulse
Amplitude of widest external neg pulse
Width of widest external pos pulse

Width of widest external neg pulse
Amplitude of internal pulse corresponding
to the highest external pos- pulse
Amplitude of internal pulse corresponding
to the highest external neg pulse
Amplitude of internal pulse corresponding
to the widest external pos pulse
Amplitude of internal pulse corresponding
to the widest external neg pulse

Engineering Data
TPM Relay status
+28-V Power input voltage
+5-V Housekeeping voltage
+12-V Housekeeping voltage
+28-V Power input current
PPU Temperature No. 1
PPU Temperature No. 2
TPM Temperature
ESA +5-V Housekeeping voltage
ESA +10-V reference voltage
ESA electron-CEM bias
ESA ion-CEM bias
ESA Temperature
ESA Sweep voltage
ESA High voltage (+50, +300, +500)
ESA +10-V housekeeping voltage

34
35
36
37
38
39
40
41
42

43
44

45

46
11
12
13
14
17
18
29
19
20
21
22
23
24
25
26

Cumulative Hazard-Algorithm and Ignition Data

lon Hazard Count (low byte)

lon Hazard Count (high byte)
Electron Hazard Count (low byte)
Electron Hazard Count (high byte)
SPM1 Hazard Count (low byte)
SPM1 Hazard Count (high byte)
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147
148
149
150
1561




60 SPM2 Hazard Count (low byte) 162

61 SPM2 Hazard Count (high byte) 1563
62 TPM Hazard Count (low byte) 154
63 TPM Hazard Count (high byte) 1656
64 Plasma Source Ignition Count (low byte) 169
65 Plasma Source Ignition Count (high byte) 170
66 Bit Flip Count (low byte) 172
67 Bit Flip Count (high byte) 173
68 Overtemperature Flag 174
69" Power Relay Status 175
70 iESA-caused Ignition Count (low byte) 159
71 iESA-caused Ignition Count (high byte) 160
72 eESA-caused Ignition Count (low byte) 161
73 eESA-caused Ignition Count (high byte) 162
74 SPM1-Caused Ignition Count (low byte) 163
75 SPM1-Caused Ignition Count (high byte) 164
76 SPM2-Caused Ignition Count (low byte) 165
77 SPM2-Caused Ignition Count (high byte) 166
78 TPM-Caused Ignition Count (low byte) 167
79 TPM-Caused Ignition Count (high byte) 168
ESA Data

80 ESA Channel 0 Status Byte No. 1 49

81 ESA Channel 0 Status Byte No. 2 50

82 ESA Channel 0 lon Count (high byte) 51

83 ESA Channel 0 lon Count (low byte) 52

84 ESA Channel 0 Electron Count (high byte) 53

85 ESA Channel 0 Electron Count (low byte) 54

[The ESA data in No.s 86 to 175 are structured similarly to Channel 0, given in
Nos. 80 to 85]

86-91 ESA Channel 1 55-60
92-97 ESA Channel 2 61-66
98-103 ESA Channel 3 67-72
104-109 ESA Channel 4 73-78
110-115 ESA Channel 5 79-84
116-121 ESA Channel 6 85-90
122-127 ESA Channel 7 91-96
128-133 ESA Channel 8 97-102
134-139 ESA Channel 9 103-108
140-145 ESA Channel 10 109-114
146-151 ESA Channel 11 115-120
152-157 ESA Channel 12 121-126
158-163 ESA Channel 13 127-132
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164-169
170-175

176

177*
178"
179*

ESA Channel 14
ESA Channel 15

Miscelianeous
Instrument-Shorted byte
Memory Pointer (low byte)
Memory Pointer (high byte)
Memory Data (at pointer address)
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COMMAND LIST
(updated 4/7/89)

The following list describes the commands that are available for execution by FMDS.
The commands consist of a command byte, which identifies the action to be taken (and
also tells FMDS how many bytes comprise the complete command), and up to three
arguments. All commands to FMDS must be sent in matching byte pairs (for error-
protection purposes). If a nonmatching byte pair is received (or any of several illegal
commands), the most significant bit of the System Status Byte (SSB) is cleared, the '
partial command in memory is discarded, and all new commands are ignored until

receipt of a clear-command-error command (see below). This process is intended to

avoid inadvertent commands from being executed.

It FMDS undergoes a system reset during transmission of a command string, the
system may be left with an odd number of command bytes, causing a command error
when subsequent command strings are sent. To clear this condition, send a single
byte that does not match the last byte sent (available in the telemetry stream), and then
send the clear-command-error command. The first action eliminates the odd byte by
causing a command error, and the second restores normal command functioning.

Command Listing

The commands are given in sequence by command number. The top three bits of

each command tell the system how many total bytes (not counting the byte pairing

described above) in the command. All numbers in the following list are in

hexadecimal (unless otherwise noted), and bits are numbered from 0 to 7, bit 7 being

the most significant bit. MSB and LSB denote most and least significant bytes, .
respectively, while MSb and LSb denote most and least significant bits, respectively.

Command 20: Clear Command Error. This command resets the FMDS
command processor following a command error.

Command 41: Set Plasma-Source Mode. This command specifies the mode of
operation of the plasma source. The specific commands are listed below.
41 00 OFF mode. The plasma source will remain OFF.
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41 00 CATHODE CONDITIONING mode. The cathode will be automatically
conditioned (the process takes 4.5 hours), and the system will be automatically
placed in the AUTO mode. A bit is written tc EEPROM so that the system will
retain knowledge that the cathode has been conditioned after a system reset.
Execution of cathode conditioning clears any prior ignition-fault counters.

41 02 AUTO mode. The plasma source remains OFF until the charging flag is set by
an instrument that is not masked off. The plasma source remains ON as long as
a charging environment is detected or until an adjustable timeout expires. The
charging environment takes precedencs.

41 03 ON mode. The plasma source is ignited and maintained in continuous
operation in this mode.

41 04 MANUAL mode. When the system receives this command, it takes no actions
concerning the plasma source. Manual adjustments may then be made by
ground command to alter source operation. Note that if the initial mode is ON or
CATHODE CONDITIONING, the timers associated with these moces centinue to
count down while the system is in MANUAL mode.

Sending any argument other than 0 to 4 will result in a command error.

Command 42: Set CEM Gains. The lower nybble of the single argument to this
command sets the gain of the ion channel-electron multiplier (CEM), and the upper
nybble sets the electron CEM gain. Sending 42 00 sets minimum gain for each
instrument.

Command 43: Set ESA Sweep time. Bits 0 and 1 of the single argument
determine the sweep time, and bit 2, when set, disables the ESA photodiode.
Sending 43 03, for example, places the instrument in a 32-s sweep moda with the
photodiode enabled. Bits 3 to 7 are don't cares. The following table gives the sweep
times selected by the indicated bit patiern:

0 0 4
0 1 8
1 0 16
1 1 32
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‘Command 44: Set Overtemperature Mask/Clear Overheat Flag. The
Executive routine will power down instruments whose temperatures exceed a
predetermined value. Setting bit 7 of the single argument of this command clears the
overheating flag, and setting each bit in the lower nybble will cause Executive to
ignore overheating indications from the corresponding instrument. Bits 4 to 6 are don't
cares.

Bit1  Temperatyre Sensor

0 Plasma source electronics T1
1 Plasma source electronics T2
2 ESA
3 TPM

Command 45: Set Telemetry Start Byte. The telemetry stream consists of a5
(180 decimal) bytes, the first 4 of which are always sent. This command sets the
starting point in the data set from which subsequent bytes are placed in the telemetry
stream. (Command 46, below, specifies how many bytes ara to be sent.) Sending
45 04 establishes the normal setting (i.e., no gap in the data set).

Command 46: Set Number of Telemetry Bytes to be Sent. Sending 46 b3
causes all bytes to be sent; an argument less than a5 will cause a telemetry stream of
reduced length. An argument of greater than a5 will cause a command-error
condition.

Command 67: Manually Operate Vaives or Relays. The first argument
specifies the valve or relay to be acted upon (only one at a time may be operated), and
the second argument specifies ON (=01) or OFF (=00) for relays, OPEN (=01) or
CLOSE (=00) for valves. N.B. — Avoid the s mantic problem that CLOSEing a relay
turns it ON, while CLOSEinq a valves turns it OFF by adhering strictly to the foregoing
defir. “ns. The following table gives the identification numbers for each vaive or

re =,

246




Valve/Relay Num! \dentificati

Plasma-source power relay
Low-pressure gas valve
Bypass valve
High-pressure valve

SPM1 power relay

ESA power relay

TPM power relay

SPM2 power relay

N O SsS WD -+ O

Removing the power to an instrument wi!l cause the system to not consider data from
that instrument; it will not attempt to power them again. Valves will similarly not be
reset by the system until the next plasma source ignition attempt. The plasma-source
ignition algorithm will not take into account manual valve alterations. Sending

67 02 00, for example, will close the bypass valve; an ignition attempt in this
condition will fail the first time, but operate normally thereafter.

Any command (from any source) that would cause all three valves to be
simultaneously open will produce a system reset.

Command 48: Manually Set Plasma-Source Setpoints. This command
alters the plasma source setr.oints. It will remain in effect until an ignition, cathode-
conditioning, or shutdown process alters the setpoints. If the plasma source is ignited,
the system will re-send the command every 4 s to protect against noise- or radiation-
induced state changes. The following table indicates the bit pattern of the control byte.
Multiple setpoint changes can be made simultaneously.

Bit Eunction

0 Discharge ON/OFF

1 Cathode Heater ON/OFF

2 Cathode Heater setpoint LSb

3 Cathode Heater setpoint MSb
4 Discharge/Keeper setpoint LSb
5 Discharge/Keeper setpoint MSb
6 Keeper ON/OSF

7 Don't care
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Command 49: Set Discharge-Current Run Setpoint. A short time after
ignition, the plasma source is placed in a setpoint that will persist until the next ignition.
This command selects this normal run-level setpoint from among the four alternatives.
Sending 49 03, for example, places the plasma source in its maximum plasma-
production mode, while 49 00 will produce minimum plasma production.

Command 6a: Set Memory Readout Address. The contents of the memory
location in the Master microprocessor memory that is pointed to by the address
specified in this command appears in the telemetry stream. The first argument is the
LSB of the address, and the second argument is the MSB. Sending 6a 34 12, for
example, will cause the contents of location 1234 to appear in the telemetry stream.

Command 4b: Set Cathode-Heater Levels. The plasma source is normally
ignited and run without the use of the cathode heater. In case of degraded operation,
however, the cathode heater may be turned ON before ignition and/or during running.
Setting bit 7 causes the cathode heater to be turned ON 5 min prior to ignition (this will
delay ignition by 5 min after a charging flag is encountered), and bits 4 (LSb) and 5
(MSb) specify the heater setpoint. Setting bit 3 enables cathode-heater operation after
ignition (the cathode heater would otherwise be turned OFF), and bits C (LSb) and 1
(MSb) specify the run-time setpoint. The run-time and pre-ignition setpoints and
operation are independent. Setting run-time cathode-heater operation will not delay
ignition following detection ot a charging event. [If a requirement for cathode-heater
power occurs early in the plasma-source life, it is likely due to contamination;
executing cathode conditioning m.y solve the problem by vaporizing contaminants.]

Command xc: Ground-Writable Command. This command presently does
nothing, but 50 bytes (80 decimal) of space is provided to allow convenient ground
writing of a new command. "x" will be either 2, 4, 6, or 8 depending on whether the
command uses 0, 1, 2, or 3 arguments.

Command 4d: Set SPM Charging Threshold. Sending 0 through 3 will set the
tolerance level of the system for detected spacecraft charging; if potentials are
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detected above these levels by any instrument, the plasma source will be ignited.
Sending 4d 02 sets the threshold to 1000 V.

Argument Ihreshold
00 200 V
01 500 V
10 1000 V
11 2000 V

Sending any other argument will result in a command error.

Command 4f: Set Instrument Mask. This command causes the system to ignore
data from a specified instrument (or instruments) in determining the presence of a
charging event while still placing data from the instrument in the telemetry stream. It is
an alternative to powering down an instrument that produces too many false alarms.
The table below gives the instruments that are masked oft when the corresponding bit
is set.

Instrument masked off
ion ESA

electron ESA
TPM

SPM1

SPM2

. Electrometer
6to7 Don't care

Sending 4t 05, for example, will remove the ion-ESA and TPM data from consideration
by the charging-hazard algorithm.

Command 50: Set Eclipse Limitation on eESA. If the single argument to this
command is non-zero, a charging indication from the electron ESA (eESA) will cause
plasma-source ignition only if the spacecraft is in eclipse (as detected by the ESA
photodiode, whether enabled or not). Sending 50 00, for example, will cause the
eESA to trigger plasma-source ignition in either darkness or sun.
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Command 37: Warm Reboot. Sending this command causes the Controller to
execute an 8085 HLT instruction; this causes a system reset similar to a power-up
condition.

Command 58: Enable/Disable SPM Automatic Zeroing. This single-
argument command enables the automatic zeroing algorithm for the SPMS. If the
upper nybble or the argument is nonzero, then the routine iooks for plasma-source-ON
duration of two hours; it then stores the current vaiur of the SPM telemetry-127 as the
offset for SPM1. From then on, the SPM voltage is computed from the telemetry value-
oftset. The lower nybble of the argument affects SPM2. Sending 58 0f, for example,
disables automatic zeroing for SPM1, and enables it for SPM2. The offsets generated
by this command and the manual commands following do not affect the SPM voltage
telemetry that is sent to the ground.

Command 59: Manually Set SPM1 Offset. This command seis up an offset (the
single argument) which is subtracted from the telemetry value of the SPM1 potential
output before computing the SPM potential. if automatic rezeroing is enabled, the
offset will be overwritten when the plasma source is next on for two hours. Sending
59 02, for example, will correct the case in which SPM1 reads 81 (where 71
corresponds to zero charging) under conditions that are believed to be uncharged.

Command 5a: Manuaily Set SPM2 Offset. Same as command 59, except for
SPM2.

Command 5b: Set IESA Threshold. This single-argument command specifies
an iESA channel number 01 through 0f); if the iIESA algorithm detects charging above
a value corresponding to the channel center energy, then the charging flag will be set.
Sending 5b 10, for example, sets channel 10 (2 kV) as the threshold (this is the default
value).

Command 3¢: Write Auto-Rebooting flag in RAM. If the byte eb is written at
location 1002 in EEPROM FMDS will, on application of power, go through its
automatic sequence of powering up the instruments. If not, the master processor will
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be confined to executing code in PROM only (indicated by a plasma-source mode of {0
in the telemetry stream). The command string 93 ff fi xx must be sent to permit
execution of code in EEPROM. If FMDS is reset, the above command would again
have to be sent to bring FMDS to full operation. However, sending command 3c writes
a flag to RAM (it puts fd28 at _Uend_+1) which will cause FMDS to power up normally
after a reset.

Command 9d: Write Data to RAM. This command writes a byte to a specified
address in RAM. It takes three arguments: (address low byte) (address high byte)
(data). Sending 9d 3c 40 ab, for example, writes the byte ab at location 403c.

% U, S. GOVERNMENT PRINTING OFF1ICE: 1990--700-000/:0002
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